Could anyone give me a reference for the proof of “ In a commutative artinian ring, every maximal ideal is a minimal prime ideal and every minimal prime ideal is a maximal ideal” ?
2026-02-22 19:54:30.1771790070
Maximal and prime ideal in an artinian ring
534 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in MAXIMAL-AND-PRIME-IDEALS
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- Prime ideals of $\Bbb C[X, Y]$.
- The radical of the algebra $ A = T_n(F)$ is $N$, the set of all strictly upper triangular matrices.
- Primary decomposition in a finite algebra
- Spectrum of $\mathbb{Z}[\frac{1}{6}]$
- Does $\mathbb Z/{2}\times\mathbb Z/{2}$ have no maximal and prime ideal?
- characterizing commutative rings, with nilpotent nilradical , satisfying a.c.c. on radical ideals
- Maximal and prime ideal in an artinian ring
- ring satisfying a.c.c. on radical ideals, with nilpotent nilradical and every prime ideal maximal
- Is this true? An element which is not contained in a maximal ideal.
Related Questions in ARTINIAN
- $M$ finitely generated over $(R,\mathfrak{m})\Rightarrow M/\mathfrak{m}M$ artinian
- Primary ideals in an Artinial local ring
- Projectivity of a module
- Maximal and prime ideal in an artinian ring
- Example of a module that is finitely generated, finitely cogenerated and linearly compact, but not Artinian!
- If M is a a left module over $M_n(D)$ where $D$ is a division ring, M is Noetherian iff Artinian
- Checking if quotient ring is Noetherian or Artinian over a module
- Infinite Artin ring with only finitely many units
- Question about Hopkins-Levitzki Theorem's proof
- Jacobson local ring that is not Artinian
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?