Given an undirected graph with n nodes and k edges , find the minimum number of edges that have to be removed in order to attain an acyclic graph. I initially thought that the minimum number of edges that need to be removed is the number of cycles that exist in the graph since each cycle needs one edge to be removed.
2026-02-22 17:37:35.1771781855
Minimum number of edges that have to be removed in a graph to make it acyclic
3k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in ALGORITHMS
- Least Absolute Deviation (LAD) Line Fitting / Regression
- Do these special substring sets form a matroid?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Correct way to prove Big O statement
- Product of sums of all subsets mod $k$?
- Clarificaiton on barycentric coordinates
- Minimum number of moves to make all elements of the sequence zero.
- Translation of the work of Gauss where the fast Fourier transform algorithm first appeared
- sources about SVD complexity
- Simplest Optimization Framework for this Problem
Related Questions in COMPUTER-SCIENCE
- What is (mathematically) minimal computer architecture to run any software
- Simultaneously multiple copies of each of a set of substrings of a string.
- Ackermann Function for $(2,n)$
- Algorithm for diophantine equation
- transforming sigma notation into harmonic series. CLRS A.1-2
- Show that if f(n) is O(g(n) and d(n) is O(h(n)), then f(n) + d(n) is O(g(n) + h(n))
- Show that $2^{n+1}$ is $O(2^n)$
- If true, prove (01+0)*0 = 0(10+0)*, else provide a counter example.
- Mathematics for Computer Science, Problem 2.6. WOP
- Partial ordering set subset relation
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Basically, we combine these observations:
If the connected components in the original graph have $c_1,c_2,\ldots,c_k$ vertices, then the any union of spanning trees for each component has exactly $$(c_1-1)+(c_2-1)+\cdots+(c_k-1) = (c_1+\cdots+c_k)-k$$ edges. The number of edges we need to delete is thus $$|E(G)|-(c_1+\cdots+c_k)+k.$$