The Löwenheim–Skolem theorem shows that we can find a countable elementary submodel of $V$ that satisfies $ZFC$. [assuming, Con$(ZFC$)]. Call this set $U$. Then by the definition of elementary submodel, $V$ and $U$ must believe the same formulae. Let $\kappa$ be a cardinal in $U$ that $U$ believes to be uncountable. (Such a cardinal must exist as $V$ believes that there are uncountable cardinals, therefore so does $U$). Then as $U$ countable, $\kappa$ must be countable (as seen from $V$). However, now $U$ and $V$ disagree about the formula '$\kappa$ is uncountable', which seems (to me) to contradict the definition of elementary submodel. Where have I gone wrong here?
2026-02-22 18:02:13.1771783333
Misunderstanding Löwenheim–Skolem
591 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOGIC
- Theorems in MK would imply theorems in ZFC
- What is (mathematically) minimal computer architecture to run any software
- What formula proved in MK or Godel Incompleteness theorem
- Determine the truth value and validity of the propositions given
- Is this a commonly known paradox?
- Help with Propositional Logic Proof
- Symbol for assignment of a truth-value?
- Find the truth value of... empty set?
- Do I need the axiom of choice to prove this statement?
- Prove that any truth function $f$ can be represented by a formula $φ$ in cnf by negating a formula in dnf
Related Questions in SET-THEORY
- Theorems in MK would imply theorems in ZFC
- What formula proved in MK or Godel Incompleteness theorem
- Proving the schema of separation from replacement
- Understanding the Axiom of Replacement
- Minimal model over forcing iteration
- How can I prove that the collection of all (class-)function from a proper class A to a class B is empty?
- max of limit cardinals smaller than a successor cardinal bigger than $\aleph_\omega$
- Canonical choice of many elements not contained in a set
- Non-standard axioms + ZF and rest of math
- If $\kappa$ is a regular cardinal then $\kappa^{<\kappa} = \max\{\kappa, 2^{<\kappa}\}$
Related Questions in MODEL-THEORY
- What is the definition of 'constructible group'?
- Translate into first order logic: "$a, b, c$ are the lengths of the sides of a triangle"
- Existence of indiscernible set in model equivalent to another indiscernible set
- A ring embeds in a field iff every finitely generated sub-ring does it
- Graph with a vertex of infinite degree elementary equiv. with a graph with vertices of arbitrarily large finite degree
- What would be the function to make a formula false?
- Sufficient condition for isomorphism of $L$-structures when $L$ is relational
- Show that PA can prove the pigeon-hole principle
- Decidability and "truth value"
- Prove or disprove: $\exists x \forall y \,\,\varphi \models \forall y \exists x \,\ \varphi$
Related Questions in PARADOXES
- Is this a commonly known paradox?
- What is the set $\{M \subset \mathbb{R}^n| M^{af} \subsetneq M^f\}$?
- Seeming contradiction of the tertium non datur principle through a logic problem
- What's the square root of i to the power of 4?
- Misunderstanding Löwenheim–Skolem
- If and only if condition for Simpson's paradox
- Find a perfect strategy algorithm for finding another person in a shop
- When does the Bertrand paradox apply?
- Why is $((-8)^2)^{1/6} > 0 \text{ and } -2 = (-8)^{1/3}$?
- Infinite series with finite sum
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Good question! This is a subtle point. The error is when you write:
This is not the case! Presumably, the reason for believing $(*)$ is (something like) "$\kappa$ in $U$, so $\kappa\subseteq U$," but this assumes that $U$ is transitive. (A set $A$ is transitive if $y\in x\in A\implies y\in A$.)
This need not be the case; in fact, your exact argument shows that $U$ is never transitive! Rather, all we can conclude from the countability of $U$ is that the set $$\kappa\cap U$$ must be countable (as seen from $V$). Basically, $U$ will contain lots of elements which are uncountable sets, but $U$ will contain only "countably much" of each.