Let $N$ be a normal subgroup in $G*H$ generated by G. Then $H\cong G*H/N$
$G*H$ is free product of $G$ and $H$
By universal property , there exists a surjective homomorphism $\epsilon:G*H\rightarrow H$ with respect to trivial map $\phi:G\rightarrow H$ and identity map $\psi:H\rightarrow H$.
Since $\epsilon(G)$={$e$} and $N=<<G>>$ (the normal subgroup generated by G), there is a homomorphism $\bar\epsilon:G*H/N\rightarrow H$
Then how can I get the injection?
You can write an element of $G*H$
$x=g_1x_1...g_nx_n$, $x=g_1x_1..g_nx_ng_{n+1}$, $x_1g_1...x_ng_n$, $x_1g_1..x_ng_nx_{n+1}$.
Suppose that $\phi(x)=1$. We consider the case $x=x_1g_1...g_nx_n$, $\phi(x)=1$ implies $x_1...x_n=1$.
We can write $x=x_1g_1{x_1}^{-1}(x_1x_2)g_2(x_1x_2)^{-1}(x_1x_2x_3)g_3(x_1x_2x_3)^{-1}...(x_1...x_{n-1})g_{n-1}(x_1..x_{n-1})^{-1}(x_1...x_n)g_n=x_1g_1{x_1}^{-1}(x_1x_2)g_2(x_1x_2)^{1}(x_1x_2x_3)g_3...(x_1...x_{n-1})g_{n-1}(x_1..x_{n-1})^{-1}g_n$
which is $N$
Use a similar approach for the other cases.