How do I show that $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$, but that there is no $u\in R^*$ such that $y=ux$? Working with ideals is relatively new to me, so I would appreciate it if somebody could show me the proof for this.
2025-01-12 19:20:44.1736709644
$x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
45 Views Asked by user242125 https://math.techqa.club/user/user242125/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Projective Indecomposable modules of quiver algebra
- Binary relations for Cobb-Douglas
- Relations among these polynomials
- Number of necklaces of 16 beads with 8 red beads, 4 green beads and 4 yellow beads
- Page 99 of Hindry's Arithmetics, follows from exact sequence that $\text{N}(IJ) = \text{N}(J)\text{card}(J/IJ)$?
- How to write the identity permutation as a product of transpositions
- Is $H$ a subgroup?
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Having some problems with understanding conics and graphing (eccentricity)
- Is this Cayley Diagram contradictory?
Related Questions in RING-THEORY
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Show that the quotient ring $R/\mathcal{I}$ is a field.
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- Constructing finite fields of order $8$ and $27$ or any non-prime
- How do I show that the unit group of $\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$ is a cyclic group of order 10?
- What is a cubic ideal/partial cubic ideal?
- Surjective ring homomorphism from polynomial to complex numbers
- Generalization of nilpotency in ring theory?
- Give an example of an injective ring homomorphism $f : R \to S$ where $R$ is commutative, but $S$ is not commutative
- Is the ring of formal power series in infinitely many variables a unique factorization domain?
Related Questions in IDEALS
- Property of the norm of an ideal
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- Prime ideals $\mathfrak{p} \supset \mathfrak{a}$ are finite in one-dimensional Noetherian domain
- What is a cubic ideal/partial cubic ideal?
- A principal maximal ideal
- Ideals in Lie algebras
- Ideals of $\mathbb{Z}[i]$ geometrically
- Does reduceness of $K[t_1,\dots,t_n]/I$ imply radicality of $I$?
- Product of ideal generators
- Density of integers that are norms of ideals for $K \ne \mathbb{Q}$
Related Questions in PRINCIPAL-IDEAL-DOMAINS
- $x=(0,\overline{1})$ and $y=(0,\overline{2})$ generate the same ideal in $R=\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$
- How do I show that the unit group of $\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$ is a cyclic group of order 10?
- Is a localization of a UFD at a prime ideal a PID?
- Ideal class group of $ \mathbb{Z}[ \sqrt{2} ] $
- $R=\{a/b: a,b \in \mathbb{Z}$ and $b$ is odd}. Show that the ring $R$ is a PID.
- Is $\mathbb{Z}[\sqrt[3]{2}]$ a principal ideal domain?
- Finitely generated torsion free module over $A$ is locally free
- When is $\Bbb{Z}[\zeta_n]$ a PID?
- Find an Ideal of $\mathbb{Z}+x \mathbb{Q}[ x ]$ that is NOT principal
- Question in proving "Any principal ideal domain is a unique factorization domain"
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Both 1 and 2 are generators of $\mathbb{Z}/5\mathbb{Z}$. That should be enough for first part.
And as mentioned in comment by @AmitaiYuval, second statement is not true since $(1,3)(0,2)=(0,1)$.