Nonmonotone functions in compact convex space

9 Views Asked by At

I am asking for more explaining about : If we have a function $ F\mathrm{(}x\mathrm{)} $ which is not monotone in $ x $

And then we can say that the function :

$ \overline{F}{\mathrm{(}}{x}{\mathrm{)}}\mathrm{{=}}{F}{\mathrm{(}}{x}{\mathrm{)}}\mathrm{{+}}{Mx} $ For $ {M}\mathrm{{>}}{0} $

is monotone nondecreasing .

Or the function is monotone:

$ \overline{F}{\mathrm{(}}{x}{\mathrm{)}}\mathrm{{=}}{F}{\mathrm{(}}{x}{\mathrm{)}}\mathrm{{-}}{Mx} $ For $ {M}\mathrm{{>}}{0} $

nonincreasing Where the functions are compact and convex functions in closed interval.