We look at the ring of integers modulo a prime power, say $p^r$ and $r>1$. Eulers totient formula says that there are $p^r-p^{r-1}$ elements in this ring $\mathbb{Z}_{p^r}$ that are coprime to $p^r$. Denote this set of coprime numbers by $C\subset \mathbb{Z}_{p^r}$. Suppose now $x\in C$. I am curious about the cardinality of the set $C_x:=\{y\in C: x+y\in C\}$. Or written differently, $C_x=\{z\in x+C: z\in C\}=(x+C)\cap C$. Writing it in this way, makes me think if there are results in additive combinatorics which say something about $|C_x|$. If someone knows results which apply to this case, please let me know. Thanks.
2026-02-22 21:02:56.1771794176
number of sums in $\mathbb{Z}_{p^r}$ which are coprime to $p^r$
33 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ADDITIVE-COMBINATORICS
- Exercise 1.1.6 in Additive Combinatorics
- Show that $A+B$ contains at least $m+n-1$ elements.
- Advantage of Fourier transform on $\mathbb{Z}_N$
- Sorting on non-additive ratios
- Asymptotic formula for the integral sequence s(n)
- Show that $|A+A| < 2.5 |A| $ with $A = \{ [n \sqrt{2}] : 1 \leq n \leq N \}$
- show that $[n \sqrt{3}]$ is an approximate group
- A combinatoric solution (closed expression) for $\sum_{k=i}^n \binom{n}{k}p^k(1-p)^{n-k}$
- On Gowers' approach of Green-Tao Theorem ($\mathcal{D}f$s span $L^q(\mathbb{Z}_N)$).
- Is that specific function additive under disjoint union?
Related Questions in SUMSET
- Sum of two subspaces is a subspace
- number of sums in $\mathbb{Z}_{p^r}$ which are coprime to $p^r$
- Is the sum (difference) of Borel set with itself a Borel set?
- If the set $A$ is open in $X$, is the set $\{x+y : x\in A \}$ also open for a given $y \in X$ under any metric space?
- Where can I find this article by I. Ruzsa?
- Retrieve a series knowing all its convergent infinite powersums
- Nr of monthly eggs that have converted to chickens based on nr of months
- Finding elements such that none add to a perfect square
- Lower-bounding the density of 3A in terms of that of 2A
- Prove that if $|A+A| \leq K|A|$ then $2A - 2A$ is a $K^{16}$-approximate group.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If we fix $$x\ne 0\mod p$$ then we have two conditions for $y$ :
$$y\ne 0\mod p$$ $$y\ne -x\mod p$$
Hence , of the $p$ possible residues , $y$ is allowed to have $p-2$. Hence, there are $$\frac{p-2}{p}\cdot p^r=(p-2)\cdot p^{r-1}$$ numbers in the range $[0,p^r-1]$ with the desired property.