The Alexander polynomial of a knot is of the form $$\Delta(t)=det(V^T-tV),$$ where $V$ is the Seifert matrix, see http://archive.lib.msu.edu/crcmath/math/math/a/a116.htm. What is geometric or some other meaning of the zeros of the polynomial? I've encountered a similar expression in the theory of 2D/planar electrical networks, where the zeros are essentially multipliers of harmonic continuation on the networks.
2026-02-22 21:30:29.1771795829
On Alexander polynomial of a knot
675 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in KNOT-THEORY
- Is unknot a composite knot?
- Can we modify one component of a link and keep the others unchanged
- Can we split a splittable link by applying Reidemeister moves to non-self crossings only
- Involution of the 3 and 4-holed torus and its effects on some knots and links
- Equivalence polygonal knots with smooth knots
- Can a knot diagram be recovered from this data?
- Does Seifert's algorithm produce Seifert surfaces with minimal genus?
- Equivalence of links in $R^3$ or $S^3$
- Homotopy type of knot complements
- The complement of a knot is aspherical
Related Questions in PLANAR-GRAPHS
- max planarity and triangulation
- How to find a minimal planar covering of a graph
- Complete bipartite planar graphs
- Is graph Planar?
- Kuratowski's theorem on Planar graphs
- Graph Theory: Degree of regions in a planar graph
- On the Hex/Nash connection game theorem
- Graph Theory: There is only one planar graph with all vertices of degree 4 and 10 regions
- Intersection of circles and regions
- Which of these graphs is planar?
Related Questions in ANALYTIC-CONTINUATION
- Uniqueness of analytic continuation to assign sum values
- Numerically solve complex differential equation
- Computing the value of a spectral zeta function at zero
- Riemann zeta meromorphic cont. using Abel summation formula
- Analytic continuation "playing nice" with function composition
- Reconstructing an analytic function from its Taylor series at a point
- Analytic Continuation on the Unit Disk
- Problem based on analytic continuation along a path
- Fourier transform of meromorphic function
- Extension of a number-theoretic polynomial to the reals [Berkeley Math Tournament]
Related Questions in KNOT-INVARIANTS
- Can we modify one component of a link and keep the others unchanged
- Can we split a splittable link by applying Reidemeister moves to non-self crossings only
- Does Seifert's algorithm produce Seifert surfaces with minimal genus?
- Coloring of a knot diagram by a trivial quandle
- How to obtain all possible colorings of a knot diagram by a given quandle
- Are any knot volumes known to be (ir)rational? If not, then why is the question difficult?
- Alternating and Non-Altenating Knot projections with same crossing number?
- what is a delta move on a trefoil knot
- Quantum invariants of 2-knots
- On Alexander polynomial of a knot
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The zeros of the Alexander polynomial are the values where the Tristam-Levine signature of the knot can jump. Let $V$ be a Seifert matrix of $K$ and let $\omega\in\mathbb{C}$ be on the unit circle. The Tristam-Levine signature $\sigma_\omega(K)$ is defined as the signature (number of positive eigenvalues minus number of negative eigenvalues) of the matrix $$(1-\omega)V + (1-\overline{\omega})V^T.$$ The Tristam-Levine signature is locally constant away from zeros of the Alexander polynomial, but can jump from one value to another on either side of a zero.
On another note, the zeros of the Alexander polynomial can say something about the growth rates of the first homology of the cyclic branched covers of the knot. Let $\Sigma_n(K)$ be the $n$-fold cyclic branched cover of $S^3$ branched along $K$. Furthermore, let $b_n=|H_1(\Sigma_n(K))|$ be the size of the first homology of the $n$-fold branched cover. Gordon proved that all of the zeros of the Alexander polynomial of $K$ are roots of unity if and only if the sequence $\{b_n\}$ is periodic. Gonzalez-Acuna and Short proved the if the Alexander polynomial has a zero that is not a root of unity, then the sequence $\{b_n\}$ tends to infinity.
Finally, Hoste conjectured that if $K$ is an alternating knot, then the real part of any zero $\alpha$ of the Alexander polynomial of $K$ satisfies $\operatorname{Re}(\alpha)>-1.$ Lyubich and Murasugi proved Hoste's conjecture in some special cases. The general case is still open. Stoimenow showed that Hoste's conjecture and the conjecture that the coefficients of the Alexander polynomial of an alternating knot form a log-concave sequence are essentially independent.