I'm having problem understanding if the following statement is true or false (prove or provide a counter example):
if $\lim_{x\to x_0+} f(x) = L$, then $\lim_{x\to x_0+} \lfloor{f(x)}\rfloor = \lfloor{L}\rfloor$ or $\lim_{x\to x_0+} \lfloor{f(x)}\rfloor = \lfloor{L}\rfloor - 1$
By intuition it seems true. However I'm clueless on either proving it or on the other hand providing a counter example.
It is not true. Consider the function,
$$f(x) = \begin{cases} 1+x & x\in\mathbb{Q},\\ 1-x, &x\not\in\mathbb{Q}\end{cases}$$
Then, $\lim\limits_{x\rightarrow0^+} f(x) = 1$ but $\lim\limits_{x\rightarrow 0^+}\lfloor f(x)\rfloor$ doesn't exist since $\lim\limits_{x\rightarrow 0^+, x\in\mathbb{Q}}\lfloor f(x)\rfloor=1$ but $\lim\limits_{x\rightarrow 0^+, x\not\in\mathbb{Q}}\lfloor f(x)\rfloor=0$