Suppose $F$ is a p-adic field, I was trying to compute orbit representatives for the group of n by n upper-triangular unipotent matrces $U_n(F)$ acting on the set of n by n skew-symmetric matrices. I think there is some structure theorem of skew-symmetric matrices saying that any skew-symmetric matrix with coefficients in a field $F$ is of the form $gS^tg$ for some g in $M_n(F)$ and $S=\begin{bmatrix} \ \ & I_d \\ -I_d & \ \ \end{bmatrix}$ for $n=2d$, even. and $S=\begin{bmatrix} \ \ &\ \ & I_d \\ \ \ & 0 & \ \ \\ -I_d & \ \ & \ \ \\ \end{bmatrix}$ when $n=2d+1$ is odd. So the orbit representatives should corresponds to the ones of the action of $U_n(F)$ on $M_n(F)/Stab(S)$. But first I couldn't find a good way to think about the stablizer $Stab(S)$, and finding the orbit representatives are also not that easy. Does anyone have a good way to think about this? Thanks a lot. (For my concern it suffices to do this problem for some open dense subset of the set of skew-symmetric matrices $Sk_n(F)$ under the p-adic topolgy, I was thinking about to use $GL_n(F)\subset M_n(F)$ and use the Iwasawa decomposition $G=UAK$ where $G=GL_n(F)$, $U=U_n(F)$, and $K$ a maximal compact subgroup such that the decomposition holds, but I don't know wether this would help or not)
2026-02-22 19:53:47.1771790027
orbit representatives for the group of unipotent matrix acting on the set of skew-symmetric matrices
62 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in GROUP-ACTIONS
- Orbit counting lemma hexagon
- Showing a group G acts on itself by right multiplication
- $N\trianglelefteq G$, $A$ a conjugacy class in $G$ such that $A\subseteq N$, prove $A$ is a union of conjugacy classes
- Show that the additive group $\mathbb{Z}$ acts on itself by $xy = x+y$ and find all $x\in\mathbb{Z}$ such that $xy = y$ for all $y\in\mathbb{Z}$.
- Number of different k-coloring of an $n\times m$ grid up to rows and columns permutations
- How to embed $F_q^\times $ in $S_n$?
- orbit representatives for the group of unipotent matrix acting on the set of skew-symmetric matrices
- $S_n$ right-action on $V^{\otimes n}$
- Interpretation of wreath products in general and on symmetric groups
- Regarding action of a group factoring through
Related Questions in P-ADIC-NUMBER-THEORY
- How does one define an inner product on the space $V=\mathbb{Q}_p^n$?
- Can $\mathbb{Z}_2$ be constructed as the closure of $4\mathbb{Z}+1$?
- Number of points in reduction of a p-adic analytic manifold.
- How do I translate functions on the Prufer 2-group between functions on the $2^n$ roots of unity and the dyadic fractions modulo 1?
- Hensel Lemma and cyclotomic polynomial
- orbit representatives for the group of unipotent matrix acting on the set of skew-symmetric matrices
- Homomorphic images of $p$-adic integers
- Criteria for a cubic polynomial in $\Bbb Q[x]$ to split completely over $\Bbb Q_p$
- Find $\frac{a}{b} \in \mathbb{Q}$ such that $ |\,\frac{a}{b} - \sqrt{2}|_3 < \epsilon $
- Hilbert symbol Definitons
Related Questions in AUTOMORPHIC-FORMS
- Evaluating $\displaystyle\int_{-\infty+iy}^{\infty+iy}(cv)^{-k}e\left(\frac{-m}{c^2v}-nv\right)dv$.
- Fuchsian Groups of the First Kind and Lattices
- Sub representation generated by a Laplace eigenfunction
- Non-vanishing of K-Bessel function
- Is there any known explicit value of dimension of space of Maass forms?
- Meromorphic functions on $X(1)$ are rational functions of $j$
- Are automorphic forms eigenfunctions?
- on Selberg trace formula
- Points of Scholze's Anticanonical Tower
- About the Hasse-Weil zeta function of modular curves
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?