Who was the first person/what was the first paper to invent/mention the persistence algorithm? (see page 6 of these lecture notes).
2026-02-22 22:32:12.1771799532
Bumbble Comm
On
Original source of the persistence algorithm?
114 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
0
Bumbble Comm
On
The persistence algorithm was first described in: Barannikov, S. (1994). "Framed Morse complex and its invariants". Advances in Soviet Mathematics. 21: 93–115.
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in ALGEBRAIC-TOPOLOGY
- How to compute homology group of $S^1 \times S^n$
- the degree of a map from $S^2$ to $S^2$
- Show $f$ and $g$ are both homeomorphism mapping of $T^2$ but $f$ is not homotopy equivalent with $g.$
- Chain homotopy on linear chains: confusion from Hatcher's book
- Compute Thom and Euler class
- Are these cycles boundaries?
- a problem related with path lifting property
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- Cohomology groups of a torus minus a finite number of disjoint open disks
- CW-structure on $S^n$ and orientations
Related Questions in ALGORITHMS
- Least Absolute Deviation (LAD) Line Fitting / Regression
- Do these special substring sets form a matroid?
- Modified conjugate gradient method to minimise quadratic functional restricted to positive solutions
- Correct way to prove Big O statement
- Product of sums of all subsets mod $k$?
- (logn)^(logn) = n^(log10+logn). WHY?
- Clarificaiton on barycentric coordinates
- Minimum number of moves to make all elements of the sequence zero.
- Translation of the work of Gauss where the fast Fourier transform algorithm first appeared
- sources about SVD complexity
Related Questions in MATH-HISTORY
- Are there negative prime numbers?
- University math curriculum focused on (or inclusive of) "great historical works" of math?
- Did Grothendieck acknowledge his collaborators' intellectual contributions?
- Translation of the work of Gauss where the fast Fourier transform algorithm first appeared
- What about the 'geometry' in 'geometric progression'?
- Discovery of the first Janko Group
- Has miscommunication ever benefited mathematics? Let's list examples.
- Neumann Theorem about finite unions of cosets
- What is Euler doing?
- A book that shows history of mathematics and how ideas were formed?
Related Questions in TOPOLOGICAL-DATA-ANALYSIS
- Persistence Homology on a grid Distance measure
- Computing natural pseudo distance.
- Understanding the last step in computing persistent homology
- matrix columns represented by binary search tree
- TDA- Persistence Diagram and Barcodes using image data (and TDA R package)
- Are the results from persistent homology complete?
- Original source of the persistence algorithm?
- bottle neck distance: distance to diagonal points
- computing wasserstein distance vs. bottleneck distance between persistence diagrams
- distance between two points at infinity in persistence diagrams
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
That'd be Delfinado and Edelsbrunner in An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere. Check the last section. Similar algorithms may have been known by others, though, since persistent homology was discovered independently in a couple other places and worked on for a while before they all found one another.