I have a problem with understanding the process of transforming a conic section into canonical form.
My conic is:
$11x^2-24xy+4y^2+2x+16y-11=0$
Can someone explain me the complete process?
I have a problem with understanding the process of transforming a conic section into canonical form.
My conic is:
$11x^2-24xy+4y^2+2x+16y-11=0$
Can someone explain me the complete process?
On
In maxima, first find the center
solve([diff(11*x^2-24*x*y+4*y^2+2*x+16*y-11,x)=0,diff(11*x^2-24*x*y+4*y^2+2*x+16*y-11,y)=0],[x,y]);
(%o1) [[x = 1, y = 1]]
Then transform the equation into one centered on the origin:
expand(11*(x+1)^2-24*(x+1)*(y+1)+4*(y+1)^2+2*(x+1)+16*(y+1)-11);
(%02) 4*y^2-24*x*y+11*x^2-2
Resulting in $11(x-1)^2-24(x-1)(y-1)+4(y-1)^2=2$ or the translated $$11x'^2-24x'y'+4y'^2=2.$$
Now we rotate:
$M=\begin{pmatrix}11&-12\\-12&4\end{pmatrix}$
eigenvectors(M);
4 3
(%o4) [[[- 5, 20], [1, 1]], [[[1, -]], [[1, - -]]]]
3 4
So, normalising the eigenvectors, $P=\begin{pmatrix}3/5&4/5\\4/5&-3/5\end{pmatrix}$ should work:
transpose(P).M.P;
[ - 5 0 ]
(%o6) [ ]
[ 0 20 ]
So $-5u^2+20v^2=2$ or $$-\frac52 u^2+10 v^2=1.$$
Option 1.
Do it with trig.
$x = u \cos\theta - v \sin \theta\\ y = u \sin \theta + v\cos \theta\\ x^2 = u^2\cos^2\theta + v^2\sin^2\theta -2uv\sin 2\theta\\ y^2 = u^2\cos^2\theta + v^2\sin^2\theta +2uv\sin 2\theta\\ xy = (u^2-v^2)\sin\theta\cos\theta + uv\cos 2\theta$
We are going to make the substitutions above and find $\theta$ such that the coefficients of the uv terms equal 0.
$-7\sin 2\theta - 24\cos 2\theta = 0\\ \tan 2\theta = -\frac {24}7\\ \cos 2\theta = \frac {7}{\sqrt{7^2+24^2}} = \frac {7}{25}\\ \cos\theta = \sqrt {\frac {1+\frac 7{25}}{2}} = \frac{4}{5}\\ \sin\theta = -\frac {3}{5}$
$(11\cdot \frac{16}{25} + 4\cdot \frac9{25} + 24\cdot\frac{24}{25})u^2 + (11\cdot \frac{9}{25} + 4\cdot \frac{16}{25} - 24\cdot\frac{24}{25})v^2+(2\cdot\frac 45 - 16\cdot\frac 35)u + (2\cdot\frac 35 + 16\cdot\frac 45) v = 11\\ 20u^2 - 5v^2 -8u+14v=11$
And you can get home from there.
option 2: factor
$11x^2 -24 xy + 4 y^2 +2x + 16 y - 11 = 0\\ (11 x - 2y -9 )(x - 2y +1) = 2$
indicates
$11 x - 2y -9 = 0,x - 2y +1=0$
are the asymptotes.
and finally by linear algebra.
$\mathbf {x^T}\begin{bmatrix}11 &- 12\\-12&4\end{bmatrix}\mathbf {x} + \begin{bmatrix}2&16\end{bmatrix}\mathbf {x} = 11$
Diagonalize the matrix on the left.
It has characteristic equation:
$\lambda^2 - 15\lambda + 100 = 0\\ (\lambda -20)(\lambda + 5)$
$\begin{bmatrix}-9 &- 12\\-12&-16\end{bmatrix}$
$\begin{bmatrix} 4\\-3\end {bmatrix}$ is an eigenvector.
Since the matrix is symmetric the other eigenvector will be orthogonal.
$\begin{bmatrix}11 &- 12\\-12&4\end{bmatrix} = \begin{bmatrix} \frac 45&\frac 35\\-\frac 35&\frac 45\end{bmatrix}\begin{bmatrix} 20\\&-5\end{bmatrix}\begin{bmatrix} \frac 45&-\frac 35\\\frac 35&\frac 45\end{bmatrix}$
$\mathbf u = \begin{bmatrix} \frac 45&-\frac 35\\\frac 35&\frac 45\end{bmatrix}\mathbf x$
$\mathbf {u^T}\begin{bmatrix}20 &\\&-5\end{bmatrix}\mathbf {u} + \begin{bmatrix}-8&14\end{bmatrix}\mathbf {u} = 11$
Which is an equivalent expression to the first approach.