Let $G$ be a Lie group with its Lie algebra at the identity $\frak{g}$ and let $\theta$ be a $\frak g$-valued 1-form on the manifold $M$ and smooth function $g:M\to G$. Show that $$d(Ad_{g^{-1}}\theta)=Ad_{g^{-1}}d\theta+[g^*\omega,Ad_{g^{-1}}\theta]$$ where $Ad_g:\frak g\to\frak g$ is an Lie algebra isomorphism, $\omega$ is Maurer-Cartan form on $M$.
My proof is as follow. Let $X,Y$ be two tangent vectors on $M$, then
$$\text{LHS}=d(Ad_{g^{-1}}\theta)(X,Y)=X(Ad_{g^{-1}}\theta(Y))-Y(Ad_{g^{-1}}\theta(X))-Ad_{g^{-1}}\theta([X,Y])$$ $$\text{RHS}=Ad_{g^{-1}}d\theta(X,Y)+[g^*\omega,Ad_{g^{-1}}\theta](X,Y)$$ And $$Ad_{g^{-1}}d\theta(X,Y)=Ad_{g^{-1}}(X(\theta(Y))-Y(\theta(X))-\theta([X,Y]))$$ $$[g^*\omega,Ad_{g^{-1}}\theta](X,Y)=[g^*\omega(X),Ad_{g^{-1}}\theta(Y)]-[g^*\omega(Y),Ad_{g^{-1}}\theta(X)]$$
I don't know how to expand the last identity, no matter in extrinsic or intrinsic way. I have been stuck here for a whole day. Any helpful suggestions?
Here's a proof that is different in style from yours. (I'm writing out the calculus for a matrix group, but you can recast it in terms of $\text{Ad}_{g^{-1}}$. Recall that $\omega=g^{-1}\cdot dg$ is the left-invariant Maurer Cartan form. Recall that $d(g^{-1}) = -g^{-1}dg\cdot g^{-1}$. So we have \begin{align*} d(g^{-1}\theta\,g) &= dg^{-1}\wedge \theta\,g + g^{-1}d\theta\,g -g^{-1}\theta\wedge dg = g^{-1}d\theta\,g - g^{-1}dg\wedge g^{-1}\theta\, g - g^{-1}\theta g\wedge g^{-1}dg \\ &= g^{-1}d\theta\,g - \omega\wedge (g^{-1}\theta\, g) - (g^{-1}\theta\, g)\wedge \omega. \end{align*} Perhaps there's a sign issue in your formula.