Proof regarding expectations and variances

101 Views Asked by At

I have here this homework and I am really not sure which way should I follow.

Let $X_1, ... ,X_n$ be independent RV having the same distribution with a mean $\mu$ and variance $\sigma^2$ Let $ \bar X =(X_1 + ... + X_n)/n $ Show, that $\mathbb E\left(\sum\limits^n_{i=1}(X_i- \bar X)^2\right)=(n-1)\sigma^2 $

I added and subtracted $\mu$ from the inside of the sum $$\mathbb E\left(\sum^n_{i=1}(X_i-\mu + \mu - \bar X)^2\right)$$

I attached those $\mu$ to each X and I multiplied the parentheses

$$\mathbb E\left(\sum^n_{i=1}((X_i-\mu)^2-2(X_i-\mu)(\bar X-\mu) + (\bar X-\mu)^2)\right)$$

And I don't know now what am I looking for.

Could you please provide me some hint?

1

There are 1 best solutions below

1
On BEST ANSWER

You have

$ E \left( \sum_{i=1}^n \left[(X_i-\mu_x)^2 -2(X_i-\mu)(\overline X- \mu)+(\overline X- \mu_x)^2 \right]\right)$

Assign the sigma sign to each summand in the brackets. And $(\overline X- \mu)$ is Independent of i. Therefore it can be written in front of the sigma sign.

$= E \left( \sum_{i=1}^n (X_i-\mu)^2 -2(\overline X- \mu)\sum_{i=1}^n (X_i-\mu)+(\overline X- \mu)^2\sum_{i=1}^n 1 \right)$

$= E \left( \sum_{i=1}^n (X_i-\mu)^2 -2(\overline X- \mu)\sum_{i=1}^n (X_i-\mu_x)+n(\overline X- \mu)^2 \right)$

  • $\sum_{i=1}^n (X_i-\mu)=n\cdot (\overline X-\mu)$

$= E \left( \sum_{i=1}^n (X_i-\mu)^2 -2n(\overline X- \mu)^2+n(\overline X- \mu)^2 \right)$

$= E \left( \sum_{i=1}^n (X_i-\mu)^2 -n(\overline X- \mu)^2 \right)$

$= \left[ \sum_{i=1}^n E \left( (X_i-\mu)^2 \right) -nE \left((\overline X- \mu)^2 \right)\right]$

Now we know two facts:

1) $E \left( (X_i-\mu)^2 \right)=\sigma^2$

2) $E \left( (\overline X-\mu)^2 \right)=\frac{\sigma^2}{n}$

With this it is just one step to get $(n-1)\sigma^2$.