Note: just in case any of this notation seems wrong or or something, see matrix cookbook: p.15's (141), p.9's (57) and p.8's (43)
Prove that $\forall \ p \ \epsilon \ \mathbb{N}, \forall \ X \ \epsilon \ \mathbb{R}^{pxp}, \ $ if X is a positive definite matrix, $\frac{\partial ln|X|}{\partial X} = 2X^{-1} - diag(X^{-1})$.
In words: derivative of logarithm of determinantof a matrix with respect to the matrix is twice inverse minus diagonal matrix of the inverse
What I tried:
Firstly, we define differentiation of a scalar function $u$ (I guess $u: \mathbb R \to \mathbb R$) with respect to a matrix $X$ (I guess the following definition doesn't rely on $X$ positive definite, but I might be wrong):
$\frac{\partial u}{\partial X} := \begin{bmatrix} \frac{\partial u}{\partial X_{11}} \cdots \frac{\partial u}{\partial X_{1p}}\\ \vdots \ \ddots \ \vdots \\ \frac{\partial u}{\partial X_{p1}} \cdots \frac{\partial u}{\partial X_{pp}} \end{bmatrix}$, assuming of course each entry is defined.
Thus, $\frac{\partial ln|X|}{\partial X} = \begin{bmatrix} \frac{\partial ln|X|}{\partial X_{11}} \cdots \frac{\partial ln|X|}{\partial X_{1p}}\\ \vdots \ \ddots \ \vdots \\ \frac{\partial ln|X|}{\partial X_{p1}} \cdots \frac{\partial ln|X|}{\partial X_{pp}} \end{bmatrix}$
We first note that for the case where the elements of X are independent, a constructive proof involving cofactor expansion and adjoint matrices can be made to show that $\frac{\partial ln|X|}{\partial X} = X^{-T}$ (Harville). This is not always equal to $2X^{-1}-diag(X^{-1})$. The fact alone that X is positive definite is sufficient to conclude that X is symmetric and thus its elements are not independent.
It can be shown $\frac{\partial ln|X|}{\partial X_{ij}}=tr[X^{-1} \frac{\partial X}{\partial X_{ij}}]$. I prove this here and here.
Observe that
$\frac{\partial X}{\partial X_{ij}}$ is matrix with 1 in its ith row and jth column and 0 elsewhere if i=j
and $\frac{\partial X}{\partial X_{ij}}$ is a matrix with 1 in its ith row and jth column and its jth row and ith column (since positive definite matrices are symmetric) otherwise.
Examples:
$\frac{\partial X}{\partial X_{11}} = \begin{bmatrix} \frac{\partial X_{11}}{\partial X_{11}} \cdots \frac{\partial X_{1p}}{\partial X_{11}}\\ \vdots \ \ddots \ \vdots \\ \frac{\partial X_{p1}}{\partial X_{11}} \cdots \frac{\partial X_{pp}}{\partial X_{11}} \end{bmatrix}$
$= \begin{bmatrix} 1 \ 0 \cdots 0\\ 0 \ 0 \cdots 0\\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \cdots 0 \end{bmatrix}$
$\frac{\partial X}{\partial X_{12}} = \begin{bmatrix} \frac{\partial X_{11}}{\partial X_{12}} \cdots \frac{\partial X_{1p}}{\partial X_{12}}\\ \vdots \ \ddots \ \vdots \\ \frac{\partial X_{p1}}{\partial X_{12}} \cdots \frac{\partial X_{pp}}{\partial X_{12}} \end{bmatrix}$
$= \begin{bmatrix} 0 \ 1 \ 0 \cdots 0\\ 1 \ 0 \ 0 \cdots 0\\ 0 \ 0 \ 0 \cdots 0\\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \cdots 0 \end{bmatrix}$
since $\frac{\partial X_{12}}{\partial X_{12}} = \frac{\partial X_{12}}{\partial X_{21}}$ since $X_{21}=X_{12}$.
Thus, if we let $E = X^{-1}= \begin{bmatrix}e_{11} \cdots e_{1p}\\ \vdots \ \ddots \ \vdots \\ e_{p1} \cdots e_{pp} \end{bmatrix}$
and if we let $F_{ij} = X^{-1} \frac{\partial X}{\partial X_{ij}} = E \frac{\partial X}{\partial X_{ij}}$,then $F_{ij}$ is a matrix containing $e_{ij}$ in the ith row and jth column and zero elsewhere if i=j and is a matrix containing $e_{ij}$, $e_{ji}$ and zeroes in the main diagonal and zero elsewhere otherwise.
If we let $F = [f_{ij}] = tr(F_{ij})$, then $f_{ij} = \frac{\partial ln|X|}{\partial X_{ij}} = e_{ij}$ if i=j and $\frac{\partial ln|X|}{\partial X_{ij}} = tr(F_{ij}) = 2e_{ij}$ otherwise. (Note: $F \ne [F_{ij}]$. Probably should've used better notation.)
Example:
$F_{12} = E \frac{\partial X}{\partial X_{12}} = \begin{bmatrix} e_{11} \cdots e_{1p}\\ \vdots \ \ddots \ \vdots \\ e_{p1} \cdots e_{pp} \end{bmatrix}\begin{bmatrix} \frac{\partial X_{11}}{\partial X_{12}} \cdots \frac{\partial X_{1p}}{\partial X_{12}}\\ \vdots \ \ddots \ \vdots \\ \frac{\partial X_{p1}}{\partial X_{12}} \cdots \frac{\partial X_{pp}}{\partial X_{12}} \end{bmatrix}$
$=\frac{\partial X}{\partial X_{12}} = \begin{bmatrix} e_{11} \cdots e_{1p}\\ \vdots \ \ddots \ \vdots \\ e_{p1} \cdots e_{pp} \end{bmatrix}\begin{bmatrix} 0 \ 1 \ 0 \cdots 0\\ 1 \ 0 \ 0 \cdots 0\\ 0 \ 0 \ 0 \cdots 0\\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \cdots 0 \end{bmatrix}$
$=\begin{bmatrix} e_{12} \ 0 \ 0 \cdots 0\\ 0 \ e_{21} \ 0 \cdots 0\\ 0 \ 0 \ 0 \cdots 0\\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \cdots 0 \end{bmatrix}$
Thus, $tr(F_{12})=e_{12}+e_{21} = 2e_{12} = 2e_{21}$
$\therefore, \frac{\partial ln|X|}{\partial X} = F = \begin{bmatrix} e_{11} \ 2e_{12} \cdots 2e_{1p}\\ 2e_{21} \ e_{22} \cdots 2e_{2p}\\ \vdots \ \vdots \ \ddots \ \vdots \\ 2e_{p1} \ 2e_{p2} \cdots e_{pp} \end{bmatrix}= 2E -$ diag(E) = $2X^{-1} -$ diag($X^{-1}$).
QED
Any mistakes? Are there simpler or alternative ways?
Perhaps I am missing something, but the result does not seem correct just from a specific example.
Let $f(X) = \log(\det(X))$.
I am assuming when you write $\frac{\partial ln|X|}{\partial X}$ that you mean that the derivative of $f$ evaluated at $X$ in the direction $H$ is given by $Df(X)H = \operatorname{tr}(\frac{\partial ln|X|}{\partial X}^{-1} H)$.
If this is not correct, perhaps you could add your definition to avoid causing confusion and I will delete this answer.
Choose $X=\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $H=\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Both are positive definite and symmetric and $X^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$.
The usual formula gives $Df(X)H = \lim_{t\to 0} {f(X+tH)-f(X) \over t} = \operatorname{tr}(X^{-1} H)$.
With the above matrices we get $Df(X)H =4$ and by taking $t=0.01$ and just to confirm, evaluating numerically using the quotient we get ${f(X+tH)-f(X) \over t} \approx 3.95$ which is close to $4$.
From the above formula we have $G= 2X^{-1}-\operatorname{diag} X^{-1} = \begin{bmatrix} 2 & -2 \\ -2 & 1 \end{bmatrix}$ and $\operatorname{tr}(G H) = 2$.