Let $V$ be a finite vector space and let $T,S:V\to W$ linear transformations
Prove/Disprove the following:
If ${\rm Im}(T+S)\subseteq {\rm Im}(T)$ so ${\rm Im}(S)\subseteq {\rm Im}(T)$
If ${\rm Ker}(T+S)\subseteq {\rm Ker}(T)$ so ${\rm Ker}(S)\subseteq {\rm Ker}(T)$
1.Proof: Let $w\in {\rm Im}(S)$ therefore exists $v\in V$ s.t $S(v)=w$. Let take this $v\in V$ and check the image of in under $T+S$.
$$(T+S)v=_{(1)}T(v)+S(v)=T(v)+w$$
$(1)$=linearity of the transformation
Where $T(v)\in W$ and $w\in W$, but it is given that ${\rm Im}(T+S)\subseteq {\rm Im}(T)$ ,so both $T(v)+w\in {\rm Im}(T)$,but ${\rm Im}(T)$ is a subspace so $T(v)\in {\rm Im}(T)$ and $w\in {\rm Im}(T)$
2.Disprove: Let $T=I$ and $S=0$ so $I={\rm Ker}(T+S)\in {\rm Ker}(T)=I$ but $V={\rm Ker}(S)\not\subseteq {\rm Ker}(T)=\{0\}$
Are those proofs valid?
Yes, up to a couple of small errors: