How can one show that \begin{equation*} \int_0^{\infty} \frac{\cos (xt)}{1+t^2} dt = \frac{\pi}{2}e^{-x} \end{equation*} using Laplace Transform?
I tried to use the formula $$\int_0^{\infty} \frac{f(x)}{x} dx = \int_0^{\infty} F(s) ds$$ where $F$ denotes the Laplace Transform of $f$ but to no avails.
Any help would be appreciated.
Substituting $\cos xt=\frac{e^{ixt}+e^{-ixt}}{2}$ we have:$$I=\int_0^{\infty} \frac{\cos (xt)}{1+t^2} dt=\frac{1}{2}\int_0^{\infty} \frac{e^{ixt}+e^{-ixt}}{1+t^2} dt$$Denote by $H(x)$ the Laplace transform of $h(t)=\frac{1}{1+t^2}u(t)$. Therefore $I=\frac{1}{2}(H(x)+H(-x))$ which is the Laplace transform of $\frac{1}{2}(h(t)+h(-t))=\frac{0.5}{1+t^2}$. Therefore $I$ is the Laplace transform of $\frac{0.5}{1+t^2}$ and we have $I=\frac{1}{4}2\pi e^{-|x|}$ or for $x\ge 0$ , $I=\frac{\pi}{2}e^{-x}$