Prove that $Q \vdash [\forall x < \overline{n+1}]\phi \leftrightarrow [\phi^x_{\overline{n}}\land(\forall x <\bar{n})\phi]$ where $Q$ is the Robinson Arithmetic, $\phi$ is a formula with single free variable $x$, and $\bar{n}$ denotes $S\cdots S(0)$ ($n$ times $S$).
I can certainly show that $Q \vdash x< \overline{n+1} \leftrightarrow (x<\bar{n} \lor x=\bar{n})$ using one of the axioms of Robinson Arithmetic ($\forall v_1 \forall v_2 (x<Sv_2 \leftrightarrow (v_1<v_2 \lor v_1=v_2))$, but I can't proceed anymore.
Note that $[\forall x < \overline{n+1}]\phi$ is a shorthand for $\forall x (x < \overline{n+1} \to \phi)$, which is equivalent to $\forall x ((x = \overline{n} \lor x < \overline{n}) \to \phi)$, as you correctly remarked.
Now, observe that $\forall x ((x = \overline{n} \lor x < \overline{n}) \to \phi)$ is equivalent to $\forall x ((x = \overline{n} \to \phi) \land (x < \overline{n} \to \phi))$, because in propositional logic $(A \lor B) \to C \equiv (A \to C) \land (B \to C)$.
Since in first-order logic $\forall x (A \land B) \equiv \forall x A \land \forall x B$, then $\forall x ((x = \overline{n} \to \phi) \land (x < \overline{n} \to \phi))$ is equivalent to $\forall x (x = \overline{n} \to \phi) \land \forall x(x < \overline{n} \to \phi)$, which is equivalent to $\phi_\overline{n}^x \land \forall x(x < \overline{n} \to \phi)$.