Can someone please show me how to prove $||Ax||_2 \leq ||A||_2 ||x||_2$, where $||A||_2$ is the spectral norm and $ A \in \mathbb{R^{n \times n}} $ and $x \in \mathbb{R^n}$.
So far I tried to write the statement out in coordinates and then simplify, but now I'm stuck (I don't know what to do with the max eigenvalue).
Isn't this obvious? By def'n of the spectral norm $$ ||A || _2 = \max_{||x||_2\neq 0} \frac{ ||Ax ||_2 }{ ||x||_2 } $$ Assume $||x||_2 \neq 0$, thus $$ ||A x || _2 = \frac{ ||Ax ||_2 }{||x||_2} ||x || _2 \leq ||A || _2 ||x||_2 $$