I am trying to find a simple way to prove $X \in \mathbb{R}^{n \times n}$ is nonsingular given $X + X^\top \succ 0 $.
$\succ 0 $ means positive definite.
I am trying to find a simple way to prove $X \in \mathbb{R}^{n \times n}$ is nonsingular given $X + X^\top \succ 0 $.
$\succ 0 $ means positive definite.
Hint: if $Xv=0$, consider $v^T(X+X^T)v$.