Let $R$ be a left artinian ring and $M$ be an arbitrary $R$-module.
Prove that $M/J(R)M$ is a projective $R/J(R)$-module.
Let $R$ be a left artinian ring and $M$ be an arbitrary $R$-module.
Prove that $M/J(R)M$ is a projective $R/J(R)$-module.
Copyright © 2021 JogjaFile Inc.