I've gathered that it requires a cycle with degree 10 to be considered hamiltonian and it is bipartite so there can not be any odd cycle, lastly it is eulerian hence every edge set can be partitioned into cycles. However, I am not sure how to continue with this information at hand
2026-02-22 21:29:39.1771795779
Question on degree sequence of eulerian, hamiltonian bipartite graph
566 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GRAPH-THEORY
- characterisation of $2$-connected graphs with no even cycles
- Explanation for the static degree sort algorithm of Deo et al.
- A certain partition of 28
- decomposing a graph in connected components
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Fake induction, can't find flaw, every graph with zero edges is connected
- Triangle-free graph where every pair of nonadjacent vertices has exactly two common neighbors
- Inequality on degrees implies perfect matching
- Proving that no two teams in a tournament win same number of games
- Proving that we can divide a graph to two graphs which induced subgraph is connected on vertices of each one
Related Questions in BIPARTITE-GRAPHS
- Is it true that if a graph is bipartite iff it is class 1 (edge-coloring)?
- Perfect Matching
- Complete bipartite planar graphs
- Is the graph described below bipartite?
- Prove that an even order ($n=2k$) graph without cycle of order 3, has a size $m \le k^2$
- min cost flow in offline bipartite graph problem
- Rearrangeable matrix visualization
- Is there a name for Chain of complete bipartite graphs?
- Determine if G is bipartite. Find a maximal path and Eulerian circuit in G.
- Does this graph have a Hamiltonian cycle?
Related Questions in HAMILTONIAN-PATH
- constraints to the hamiltonian path: can one tell if a path is hamiltonian by looking at it?
- Most efficient way to detect if a series of n edges creates a cycle of size n.
- Is it true that every graph with $n$ vertices in which $\delta(G)\geq\frac{n}{2}-1$ has Hamiltionian path?
- Prove that if a graph $G$ has a Hamilton path then for every $S \subseteq V(G)$ the number of components of $G - S$ is at most $|S| + 1$
- Using Ore's theorem to show the graph contains a Hamilton cycle
- Graph Theory: Hamilton Cycle Definition Clarification
- Does this graph have a Hamiltonian cycle?
- Show the NP completeness of Hamiltonian Path with the knowledge of an directed Euler graph
- Finding Hamiltonian cycle for $N\times M$ grid where $N$ is even
- Graph Theory - Hamiltonian Cycle, Eulerian Trail and Eulerian circuit
Related Questions in EULERIAN-PATH
- Proof for a graph has Euler tour iff each vertex has even degree
- Graph Theory: Euler Trail and Euler Graph
- Determine if G is bipartite. Find a maximal path and Eulerian circuit in G.
- Proving the graph $V=\{S\subset\{1,2\ldots9\}\mid3\leq\left|S\right|\leq4\},\,\,\,E=\{(u,v)\mid u\subset v\}$ is connected
- How can a bipartite graph be Eulerian?
- How to find Eulerian path in the given graph?
- Question on degree sequence of eulerian, hamiltonian bipartite graph
- Sufficient condition for graph isomorphism assuming same degree sequence
- Non isomorphic graphs with closed eulerian chains
- Is this a counter example to the Eulerian Trail definition?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

Since it's Hamiltonian it contains a $C_{10}$ subgraph, and it has minimum degree at least $2$. Consequently, it's bipartition (which exists, since it's bipartite) must have two parts of size $5$, so the graph has maximum degree at most $5$. Moreover, it's connected and Eulerian, so every vertex has even degree: necessarily $2$ or $4$ in this case.
It has 18 edges, so the degrees sum to 36, by the Handshaking Lemma. Thus the degree sequence must be $(4, 4, 4, 4, 4, 4, 4, 4, 2, 2)$. Two examples are below (and hopefully it's clear how I constructed them):
They're Hamiltonian, as identified by the green Hamilton cycles. They're Eulerian because they have all-even degrees. They're bipartite, since the vertices are $2$-colored. And they're non-isomorphic, since in the first example the two degree-$2$ vertices are adjacent, and in the second example they're non-adjacent.