I have a large matrix which is around 70% zeros. How can I test whether there is some statistical regularity to those zeros, as opposed to being randomly distributed?
2026-02-22 21:47:59.1771796879
Regularity of zeros in a sparse matrix
15 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in RANDOM
- Prove that central limit theorem Is applicable to a new sequence
- Generating random versions of cubic and quadratic curve
- Is product of random numbers still random?
- Can I generate a random number with the probability distribution of the area under any arbitrary function?
- Average distance from a line to a point
- When does two random measures coincide in distribution?
- Determine the maximum period of this potential random number generator, if possible
- Does a random variable come from a probability distribution or is it vice-versa?
- Expected number of operations until matrix contains no zeros.
- Mean and Variance of Random Sum of Random Variables
Related Questions in SPARSE-MATRICES
- How does minimizing the rank of a matrix help us impute missing values in it?
- How can I approximately solve a 2-player zero-sum game by subselecting its rows/columns?
- Definition of sparsity
- Blackbox Methods for Rank Deficient Least Squares
- What is the most efficient method to compute recuversively (sparse) matrix power?
- Constant weight vectors and their linear independence
- Solving saddle-point matrix with projection when Schur's complement doesn't exist
- Sparse matrix computational difficulties
- Regularity of zeros in a sparse matrix
- Sparse Matrix inversion some time singular some time get a big value
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?