We collect certain functions from $f:X\to\mathbb{R}$ to $\mathscr{T}$ so that it is a vector space over $\mathbb{R}$ under the usual function addition, scalar product. Now we define an partial order on it: $f\leq g$ iff for all points $x\in X, f(x)\leq f(x)$. This is compatible with the vector space structure. Now we claim merely $\mathscr{T}$ as a Riesz space without giving exact formula of infimum or supremum. Can I show the formula is $f\wedge g=\min\{f,g\}$? The thing is if we just first collect functions but we might not be sure that I have collected $\min\{f,g\}$.
2026-02-22 21:01:14.1771794074
Riesz space of functions from any set $X$ to $\mathbb{R}$
94 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in VECTOR-SPACES
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Does curl vector influence the final destination of a particle?
- Closure and Subsets of Normed Vector Spaces
- Dimension of solution space of homogeneous differential equation, proof
- Linear Algebra and Vector spaces
- Is the professor wrong? Simple ODE question
- Finding subspaces with trivial intersection
- verifying V is a vector space
- Proving something is a vector space using pre-defined properties
- Subspace of vector spaces
Related Questions in ORDER-THEORY
- Some doubt about minimal antichain cover of poset.
- Partially ordered sets that has maximal element but no last element
- Ordered set and minimal element
- Order relation proof ...
- Lexicographical covering of boolean poset
- Every linearly-ordered real-parametrized family of asymptotic classes is nowhere dense?
- Is there a name for this property on a binary relation?
- Is the forgetful functor from $\mathbf{Poset}$ to $\mathbf{Set}$ represented by the object 2?
- Comparing orders induced by euclidean function and divisibility in euclidean domain
- Embedding from Rational Numbers to Ordered Field is Order Preserving
Related Questions in VECTOR-LATTICES
- Lattices in $\ell^\infty(X)$
- Why does dot product give correct angle, but cross product does not?
- Functional inequality on $\mathbb{Z}^d$
- A function space satisfying $ |f(x) -f(y)| \le ||x|^\theta -|y|^\theta| $
- A question about the supremum and infimum in a Banach lattice
- Expected number of lattice points in $S$ is like $S$'s volume
- A simple modulo arithmetic problem
- definition of complete vector lattice
- When does projecting a lattice onto a subspace give another lattice?
- Does Dedekind completeness imply the Archimeadean property?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I'm not sure, but it seems like possibly you're asking whether any vector space of functions from $X$ to $\Bbb R$ is a Riesz space, with the natural partial order. If that's the question the answer is no; for example the space of all polynomials is not a lattice.