Suppose $P$ is finite partially ordered set (poset) with $\preceq $. Suppose it's height is $n$ i.e the minimal number of antichains which cover $P$. Say $$\mathcal{A} = \{A_1,A_2,...A_n\}\;\;\;\;\;\; {\rm and}\;\;\;\;\;\;\mathcal{A}' = \{A'_1,A'_2,...A'_n\}$$ are two families of antichains which covers $P$. Suppose that $$|A_1|\leq |A_2|\leq ...\leq |A_n|$$ and $$|A'_1|\leq |A'_2|\leq ...\leq |A'_n|$$ Can we say that $|A_i|=|A'_i|$ for each $i\leq n$?
2026-02-22 19:52:40.1771789960
Some doubt about minimal antichain cover of poset.
127 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMBINATORICS
- Using only the digits 2,3,9, how many six-digit numbers can be formed which are divisible by 6?
- The function $f(x)=$ ${b^mx^m}\over(1-bx)^{m+1}$ is a generating function of the sequence $\{a_n\}$. Find the coefficient of $x^n$
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Hard combinatorial identity: $\sum_{l=0}^p(-1)^l\binom{2l}{l}\binom{k}{p-l}\binom{2k+2l-2p}{k+l-p}^{-1}=4^p\binom{k-1}{p}\binom{2k}{k}^{-1}$
- Algebraic step including finite sum and binomial coefficient
- nth letter of lexicographically ordered substrings
- Count of possible money splits
- Covering vector space over finite field by subspaces
- A certain partition of 28
- Counting argument proof or inductive proof of $F_1 {n \choose1}+...+F_n {n \choose n} = F_{2n}$ where $F_i$ are Fibonacci
Related Questions in ORDER-THEORY
- Some doubt about minimal antichain cover of poset.
- Ordered set and minimal element
- Order relation proof ...
- Lexicographical covering of boolean poset
- Every linearly-ordered real-parametrized family of asymptotic classes is nowhere dense?
- Is there a name for this property on a binary relation?
- Is the forgetful functor from $\mathbf{Poset}$ to $\mathbf{Set}$ represented by the object 2?
- Comparing orders induced by euclidean function and divisibility in euclidean domain
- Embedding from Rational Numbers to Ordered Field is Order Preserving
- Riesz space of functions from any set $X$ to $\mathbb{R}$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
No, take $P = \{ a, a', b, b', x, y \}$ with order $a < a'$, $b < b'$.
Height is 2. P is covered by { a, b }, { a', x, y, b' }
and { a', x, b }, { a, y, b' }.