Let $G$ be a group. Part two of Sylow's theorem says that all Sylow $p$-groups (for a given $p$) are conjugate. So I assume that means given two Sylow $p$-groups $P$ and $Q$ there exists $g\in G$ such that $gPg^{-1}=Q$. Of course this is a different statement from: for all $g\in G$, $gPg^{-1}$ is a Sylow-$p$ group. Right? I ask because my lecturer keeps using the latter property, which does not seem to me to follow from the former. For example, to prove that if there is only one Sylow p-group (for a given $p$), that that subgroup must be normal, he says for all $g \in G$, $gPg^{-1}=P$, because $P$ is the only one. A bit confusing.
2026-02-22 20:41:41.1771792901
Second part of Sylow's Theorem about conjugacy
540 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in SYLOW-THEORY
- A group of order 189 is not simple
- classify groups of order $p^2$ simple or not
- Proof verification - the only group of order 24 without normal sylow subgroup is $S_4$.
- Calculating the index of a subgroup containing the normalizer of a Sylow $p$ subgroup
- If $|G| = p^nq$ then $G$ has only one normal subgroup of order $q$
- Group of order 616 solvable?
- Could we get any information from about class equation from index of sylow subgroups
- Second part of Sylow's Theorem about conjugacy
- If $G$ is non-abelian and simple then $|G|$ divides $n_p!/2$
- On a special type of finite abelian groups of prime power order
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If $P$ is a Sylow $p-$subgroup, then so is $gPg^{-1},$ since they have the same cardinality. So if the Sylow $p-$subgroup is unique, we must have $$gPg^{-1}=P$$ for all $g \in G.$ Hence, $P$ is normal.