Let $\mathbb{H}$ be a complex Hilbert space.
Let $T:\mathbb{H}\rightarrow \mathbb{H}$ be a self - adjoint contraction operator.
why is the following statement true ? $$0 \le T^2 \le I$$
Let $\mathbb{H}$ be a complex Hilbert space.
Let $T:\mathbb{H}\rightarrow \mathbb{H}$ be a self - adjoint contraction operator.
why is the following statement true ? $$0 \le T^2 \le I$$
Copyright © 2021 JogjaFile Inc.
Let $( \cdot, \cdot)$ denote the inner product on $H$.
$(T^2x,x)=(Tx,Tx) = ||Tx||^2 \ge 0 $ for all $x \in H.$ This shows that $T^2 \ge 0.$
Since $T$ is a contraction, we have $||Tx|| \le ||x||$ for all $x \in H.$ Hence
$(T^2x,x)=(Tx,Tx) = ||Tx||^2 \le ||x||^2 =(x,x) $ for all $x \in H.$ This gives $T^2 \le I.$