Show that $ \ x_ 0 \ $ cannot be an optimal solution

489 Views Asked by At

Consider the LP maximize $ \large z = cx \ $ subject to $ \ Ax ≤ b \ , x ≥ 0 \ $ where $ \ c \ $ is a nonzero vector. Suppose that the point $ \ x_ 0 \ $ is such that $ \ Ax_ 0 < b \ $ and $ \ x_ 0 > 0 \ $.

Show that $ \ x_ 0 \ $ cannot be an optimal solution.

Answer:

Max $ \ Z=cx \ $ subject to $ \ Ax \leq b , \ x \geq 0 \ $

Given $ \ x_0 \ $ satisfying $ \ Ax_0 <b \ $.

Then for $ \ \epsilon >0 \ $ , there exists $ \ x'=x_0+\epsilon \ $ such that $ Ax' \leq b \ , \ x' \geq 0 $

Also,

$ cx_0 \leq cx' \ $

$ \Rightarrow x_0 \ $ is not optimal solution.

I need confirmation of my work.