Which proof of the Fundamental Theorem of Algebra requires minimum mathematical maturity and has the best chances to be understood by an amateur with knowledge of complex numbers and polynomials?
2025-01-12 19:18:06.1736709486
Simple Proof of FT of Algebra
96 Views Asked by Damian Reding https://math.techqa.club/user/damian-reding/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Laurent series of $f(z)=\frac{1}{z^2-1}$
- Integrating using Green's Theorem
- question over a integration changes order and hard to compute
- Estimate of a (integral) function
- Is the following series convergent or divergent?
- The Laurent series of $\exp(1/z)$: comparing its constant term and the value at $0$
- Whether $f(z) = z$ is analytic at the infinity?
- Does a function with an exponential growth condition necessarily have infinitely many zeros?
- How to derive the value of $\log(-1)$?
- The derivative of a two-to-one complex function has no zeros.
Related Questions in SOFT-QUESTION
- A philosophical question about an hypothetical theorem/equation of everything
- Ask for some advice in proving Calculus problems
- What are good references to self study persistent homology?
- Do we consider the dual concept of the sheaves?
- Simple Proof of FT of Algebra
- Sets with same Cardinality, but no Explicit Bijection?
- What are the first few values of this function?
- Why care about the $(\infty, 1)$-category of topological spaces?
- I feel like I'm not enjoying Maths, but studying for the sake of exams
- Is math fool-proof?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
Suppose the polynomial has no zeros. Then every value of $f(z)$ has a direction.
Draw a large circle, where $z^n$ dominates over the other terms in the polynomial. As you travel around the circle, the direction of $f(z)$ is near the direction of $z^n$, so it rotates $n$ times as $z$ goes once around the circle.
Now gradually shrink the circle, until it is nearly nothing. $f(z)$ is nearly constant as you go around the circle, so it doesn't rotate at all as you go around the circle.
The number of rotations must change from $n$ to $0$ at some point. But unless $f(z)=0$ somewhere, the number of rotations is continuous. So $f(z)=0$ somewhere.