My matrix is $$solution = \left(\begin{array}{rrr|r} 1 & 0 & 0 & \frac{2 \, {\left(\frac{2}{k - 2} - 3\right)}}{k - 1} - \frac{4}{k - 2} + 4 \\ 0 & 1 & 0 & \frac{2}{k - 2} - \frac{2}{{\left(k - 1\right)} {\left(k - 2\right)}} \\ 0 & 0 & 1 & \frac{2}{k - 1} \end{array}\right)$$
If I use the simplify command for an entry I get
sage: solution[0][3].simplify_full()
2*(2*k - 7)/(k - 1)
Is there a similar command for a full matrix?
Here's one way . . .
First define a function simp by
$\qquad$def simp(u): try: v=u.simplify_full() except: v=u return v
Then, for your matrix $A$, do
$\qquad$A = matrix(map(simp,A))