Let $\psi_{1} := (P \wedge Q \wedge R)\vee(\neg P\wedge Q\wedge\neg R)\vee(\neg P\wedge\neg Q\wedge R)\vee(\neg P \wedge\neg Q\wedge\neg R)$ and
Let $\psi_{2} := (\neg P \wedge \neg Q) \vee (\neg P \wedge \neg R) \vee (P \wedge Q \wedge R)$
I have proven so far, that the two formulas in DNF are equivalent to $P\Leftrightarrow(Q\wedge R)$
Now I need to simplify $\psi_{1}$ with classical equivalences to obtain $\psi_{2}$
My problem is, that I am struggling with the distribution of $\vee$ and $\wedge$ with three Propositional variables in the brackets.
Maybe you guys can give me some tips or help me out a bit on this one.
HINT
Use:
Adjacency
$P \Leftrightarrow (P \lor Q) \land (P \lor \neg Q)$
$P \Leftrightarrow (P \land Q) \lor (P \land \neg Q)$
So, for example, you can combine the terms $\neg P \land \neg Q \land R$ and $\neg P \land \neg Q \land \neg R$ to $\neg P \land \neg Q$
In fact, that gets you almost there. Indeed, you could likewise combine $\neg P \land Q \land R$ and $\neg P \land \neg Q \land \neg R$ to $\neg P \land \neg R$
The only issue is that doing both combinations requires two terms $\neg P \land \neg Q \land \neg R$ . But, that's easy to obtain using:
Idempotence
$P \Leftrightarrow P \land P$
$P \Leftrightarrow P \lor P$