Can someone guide me on how to solve the SDE
\begin{equation} dX_{t} = \gamma(a-\beta X_{t})dt + \delta X_{t}dW_{t} \end{equation} where $a,\beta,\gamma,\delta$ are all positive constants? I tried to approach like an Ornstein-Uhlenbeck SDE but I don't think it is the right way.
Another Idea can be: Take $g(x,t)=e^{\gamma\beta t}\times X$,apply It$\hat o$ dif. rule. $$dg=\frac{\partial g}{\partial t}dt+\frac{\partial g}{\partial x}dX+\frac 12\frac{\partial^2 g}{\partial X^2}(dX)^2\\ dg=\gamma\beta e^{\gamma\beta t}Xdt+e^{\gamma\beta t}dX+\frac12(0)\\$$now put $dX_{t} = \gamma(a-\beta X_{t})dt + \delta X_{t}dW_{t} $so $$dg=\gamma\beta e^{\gamma\beta t}Xdt+e^{\gamma\beta t}dX\\ dg=\gamma\beta e^{\gamma\beta t}Xdt+e^{\gamma\beta t}\big(\gamma(a-\beta X_{t})dt + \delta X_{t}dW_{t})\big)\\dg=e^{\gamma\beta t}\gamma adt+e^{\gamma\beta t}\delta X_{t}dW_{t}$$left hand side is complete differential ,so apply integration to both sides $$\int dg=\int e^{\gamma\beta t}\gamma adt +\int e^{\gamma\beta t}\delta X_{t}dW_{t}\\g(x,t)-g(x_0,0)=\gamma a\int_0^t e^{\gamma\beta s}ds+\delta \int_0^t e^{\gamma\beta s} X_{s}dW_{s}\\ e^{\gamma\beta t}\times X-X_0=\gamma a\int_0^t e^{\gamma\beta s}ds+\delta \int_0^t e^{\gamma\beta s} X_{s}dW_{s}\\ e^{\gamma\beta t}\times X-X_0=\gamma a(\frac{1}{\gamma\beta})(e^{\gamma\beta t}-1)+\delta \int_0^t e^{\gamma\beta s} X_{s}dW_{s}\\ e^{\gamma\beta t}\times X=X_0+(\frac{a}{\beta})(e^{\gamma\beta t}-1)+\delta \int_0^t e^{\gamma\beta s} X_{s}dW_{s}\\\times e^{-\gamma\beta t} \\ X=X_0e^{-\gamma\beta t}+\frac{a}{\beta}(1-e^{-\gamma\beta t})+\delta e^{-\gamma\beta t}\int_0^t e^{\gamma\beta s} X_{s}dW_{s}$$