How to find $$i^{i^{i^\ldots}} \quad :\quad i=\sqrt{-1}$$ I'm able to find the solution for the finite powers using $$i=e^{i(2k\pi+\frac{\pi}{2})}\quad:\quad k\in\mathbb{Z}$$ $$i^{i}=e^{-(2k\pi+\frac{\pi}{2})}$$ $$i^{i^{i}}=e^{-i(2\pi k+\frac{\pi}{2})}=-i$$ $$i^{i^{i^i}}=e^{(2\pi k+\frac{\pi}{2}) }$$ $$\text{and so on}$$ but what should be the approach to solve for infitie powers$\space$?
2026-02-22 20:37:53.1771792673
Solve $i^{i^{i^\ldots}}$
211 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-NUMBERS
- Value of an expression involving summation of a series of complex number
- Minimum value of a complex expression involving cube root of a unity
- orientation of circle in complex plane
- Locus corresponding to sum of two arguments in Argand diagram?
- Logarithmic function for complex numbers
- To find the Modulus of a complex number
- relation between arguments of two complex numbers
- Equality of two complex numbers with respect to argument
- Trouble computing $\int_0^\pi e^{ix} dx$
- Roots of a complex equation
Related Questions in EXPONENTIATION
- exponential equation with different bases; no logarithms
- Is square root of $y^2$ for every $y>0,y\in\mathbb{R}$?
- Definite sum for $(1+a)^n$
- Fractional exponents definition and the additive law of exponents
- Fourth term in the expansion of $(1-2x)^{3/2}$
- Why is $\int_{0}^{t} e^{nt} \mathrm{\ dt} = \frac{1}{n} \left(e^{nt} - 1\right)$? [solved; notation is also faulty in the first place]
- Exponentiation property of the modulo operator
- When are $\left(\frac{a}{b}\right)^c$ and $\frac{a^c}{b^c}$ equivalent?
- How can I rewrite expression to get log out of exponent
- Compare $2^{2016}$ and $10^{605}$ without a calculator
Related Questions in TETRATION
- How to solve $ax^x+bx+c=0$?
- Why is $\underbrace {i^{i^{i^{.^{.^{.^{i}}}}}}}_{n \ times}$ converging?
- Is there a Tetration Function?
- $w =\operatorname{arcsinh}(1+2\operatorname{arcsinh}(1+2^2\operatorname{arcsinh}(1+2^{2^2}\operatorname{arcsinh}(1+\dotsm$
- $f(x) = \sqrt x^{{\sqrt[3]{x}}^{\sqrt[4]{x},\cdots}}$ asymptotic?
- What is $\underbrace{2018^{2018^{2018^{\mathstrut^{.^{.^{.^{2018}}}}}}}}_{p\,\text{times}}\pmod p$ where $p$ is an odd prime?
- iterative solution of $x^x=a$
- What is the value of $i^{i^{i^{\cdots}}}$
- Finding a function satisfies $\ln F(x+1)=a F(x)$
- $f(exp(z)) = f(z) \cdot g(z) $ with closed form solutions?
Related Questions in POWER-TOWERS
- The sequence satisfying $a_2^{a_3^{\dots^{a_n}}} = n $
- $f(x) = \sqrt x^{{\sqrt[3]{x}}^{\sqrt[4]{x},\cdots}}$ asymptotic?
- Area under the infinite tetration curve
- The Tower of 5 5s
- What's a general algorithm/technique to find the last digit of a nested exponential?
- Dividing power towers by exponents
- $2^{3^{4^{...^{n}}}} \equiv 1$ (mod $n+1$)
- Is $i = e^{\frac{\pi}{2}e^{\frac{\pi}{2}^{.^{.^.}}}}$?
- Why is $x=4$ as a fixed point of a map $\sqrt{2}^{x}$ unstable?
- On the power tower $\exp(x-\exp(x-\cdots))$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
$X = i^{i^{i^{\cdot}}}$
So $X = i^X$.
So $\log (X) = X \log (i)$.
So ${\log (X) \over X} = \log (i)$.
So $X = i W(-i)$, where $W$ is the Lambert $W$ or PolyLog function.
Mathematica evaluates this to $X = 0.44 + 0.36 i$.
Here's a graph on the imaginary plane of 200 successive exponentiations with the solution as a red dot: