Assume matrix $A\in\mathbb{C}^{n\times n}$ and $|\lambda_1|\geq\dots\geq|\lambda_n|$ are the absolute values of its eigenvalues. I want to prove or disprove (by a counterexample) the following claim for the square of the absolute value of the largest eigenvalue $$|\lambda_1|^2\geq\frac{1}{n}\sum_{i,j}|a_{i,j}|^2$$ Perhaps this question has already been asked here but I couldn't find it.
2026-02-22 21:22:24.1771795344
Square of spectral radius and Frobenius norm
307 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in EIGENVALUES-EIGENVECTORS
- Stability of system of parameters $\kappa, \lambda$ when there is a zero eigenvalue
- Stability of stationary point $O(0,0)$ when eigenvalues are zero
- Show that this matrix is positive definite
- Is $A$ satisfying ${A^2} = - I$ similar to $\left[ {\begin{smallmatrix} 0&I \\ { - I}&0 \end{smallmatrix}} \right]$?
- Determining a $4\times4$ matrix knowing $3$ of its $4$ eigenvectors and eigenvalues
- Question on designing a state observer for discrete time system
- Evaluating a cubic at a matrix only knowing only the eigenvalues
- Eigenvalues of $A=vv^T$
- A minimal eigenvalue inequality for Positive Definite Matrix
- Construct real matrix for given complex eigenvalues and given complex eigenvectors where algebraic multiplicity < geometric multiplicity
Related Questions in NORMED-SPACES
- How to prove the following equality with matrix norm?
- Closure and Subsets of Normed Vector Spaces
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Minimum of the 2-norm
- Show that $\Phi$ is a contraction with a maximum norm.
- Understanding the essential range
- Mean value theorem for functions from $\mathbb R^n \to \mathbb R^n$
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Gradient of integral of vector norm
Related Questions in SPECTRAL-RADIUS
- Spectral radius inequality for non-abelian Banach algebras
- Prove or disprove that $\rho(A) = \| A \|_2$ for any real symmetric matrix $A$
- Spectral radius Volterra operator with an arbitrary kernel from $L^2$
- Proof of spectral radius bound $\min_i \sum_j a_{ij} \le \rho(A) \le \max_i \sum_j a_{ij}$
- Spectral norm of block and square matrices
- if $||AB||_\infty<1$ is I-AB is positive definite ? provided A,B are symmetric and A+B is positive definite
- Upper bound on the spectral radius of summation of two matrices one symmetric one diagonal
- Spectral radius of a matrix
- Gradient of largest eigenvalue of matrix, with respect to individual elements of the matrix
- What is the maximum expected eigenvalue of an $n \times n$ symmetric matrix?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Take $A= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $\|A\|_F = 1$, $\lambda_1 = 0$.
However, we do have $\|A\|_F^2 = \sum_k \sigma_k^2$, where $\sigma_k$ are the singular values.