I don't know if my question meets the criterion of the community or not.
Maybe my question has been asked many times, but I haven't found 100% covered answers.
In a few words my question is :
Is it mathematically possible to make regular profit in gambling (sport betting, online casino games, etc. ) ?
In a bit detailed version it'll sound like this:
There are a lot off statistics of football, tennis, and other sports. What I want is to find a way to combine mathematical skills, programming skills, sport skills and of course personal luck (as it is sport) to make some math based strategies to try to beat the bookies. So is there any source(e.g. academic paper, book) which mathematically gives the way how to use that data, what to expect from various strategies and so on and so forth ?
2026-02-22 21:43:49.1771796629
Statistics based gambling
152 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in STATISTICS
- Given is $2$ dimensional random variable $(X,Y)$ with table. Determine the correlation between $X$ and $Y$
- Statistics based on empirical distribution
- Given $U,V \sim R(0,1)$. Determine covariance between $X = UV$ and $V$
- Fisher information of sufficient statistic
- Solving Equation with Euler's Number
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Determine the marginal distributions of $(T_1, T_2)$
- KL divergence between two multivariate Bernoulli distribution
- Given random variables $(T_1,T_2)$. Show that $T_1$ and $T_2$ are independent and exponentially distributed if..
- Probability of tossing marbles,covariance
Related Questions in REFERENCE-REQUEST
- Best book to study Lie group theory
- Alternative definition for characteristic foliation of a surface
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Random variables in integrals, how to analyze?
- Abstract Algebra Preparation
- Definition of matrix valued smooth function
- CLT for Martingales
- Almost locality of cubic spline interpolation
- Identify sequences from OEIS or the literature, or find examples of odd integers $n\geq 1$ satisfying these equations related to odd perfect numbers
- property of Lebesgue measure involving small intervals
Related Questions in BOOK-RECOMMENDATION
- Books recommendations for a second lecture in functional analysis
- Book/Online Video Lectures/Notes Recommendation for Analysis(topics mentioned)
- Are there any analysis textbooks like Charles Pinter's A book of abstract algebra?
- Calculus book suggestion
- How to use the AOPS books?
- What are good books cover these topics?
- Book Recommendation: Introduction to probability theory (including stochastic processes)
- calculus of variations with double integral textbook?
- Probability that two random numbers have a Sørensen-Dice coefficient over a given threshold
- Algebraic geometry and algebraic topology used in string theory
Related Questions in GAMBLING
- optimal strategy for drawing a deck of cards
- Problem in defining an event in Gambler's ruin
- Optimal wager strategy for high win chance / high odds game
- Where am I going wrong in interpreting this problem as a gambler's ruin problem?
- Can there be a mathematical proof that a roulette player will lose?
- Card Game Odds In-Between
- What is the probability of 4 players all getting a straight in a game of 5 card poker
- Better to bet $\$50$ once or $\$25$ twice?
- An event has a 90.1 percent chance of happening. What is the probability of of triggering this event 70 times consecutively
- Percentage of time one projected value will be higher than another given means and standard deviations
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Your question is indeed off topic here, but I'll do a short answer anyway.
The only way to beat the bookies is to be a lot better than the average better in the long run at predicting who will win and by how much. Mathematical, statistical and computer tools can help some with that, but can only help. To make a living you'd need a lot of capital and be able to absorb short run losses in order to make a long run average gain. Roughly speaking, you bet on long shots. The fact that most people don't is how some online sports and fantasy sports betting websites make their profit.
You can't win at the casino games that are pure luck (roulette, slots). You can win at poker if you're enough better than the other players to take home money even after the house takes its share of the pot. You could once win, slowly, at blackjack, by "counting cards" but the casinos have made that much harder in various ways.