let be the Stieltjes transform
$$ g(s)= \int_{0}^{\infty} \frac{f(t)}{t+s} $$
then let be $ m_{n} = \int_{0}^{\infty}t^{n}f(t) $
then i get the distributional solution
$$ f(t) = \sum_{n=0}^{\infty}\frac{m_{n}}{n!}(-1)^{n}\delta^{n} (t) $$ (1)
so , if i insert this solution i get the asymptotics
$$ g(s)= \sum_{n=0}^{\infty} (-1)^{n}\frac{m_{n}}{s^{n+1}} $$
so does the solution (1) have any utility in the moment problem or something ? thanks