Study the punctual and uniform convergence of $f_n(x)$ on $A$
$$f_n(x)=\frac{x}{1+n^2 x^2} \ \ \ A=[-1,1]$$
My reasoning:
Punctual convergence
$\forall x \in A $ $$ \lim_{n \to +\infty} f_n(x)=f(x) \\ f\equiv0$$
Uniform convergence
It needs this propriety: $ f_{n+1}(x) \le f_n(x) $ (Dini's theorem hypothesis)
So, the succession converges uniformly on $[0,1]$
Is this reasoning correct?
For an alternate proof, note that $f_n'(x)=0$ implies $x=\pm\frac1n$, and \begin{align} f_n\left(\frac1n\right) &= \frac1{2n}\\ f_n\left(-\frac1n\right) &= -\frac1{2n}\\ f(-1) &= -\frac1{1+n^2}\\ f(1) &= \frac1{1+n^2}. \end{align} It follows that $$\lim_{n\to\infty}\sup_{x\in[-1,1]}|f_n(x)|=0, $$ so that $f_n$ converges uniformly to $0$ on $[-1,1]$.