Are there any descriptions of all subsets $X$ of $\mathbb Z/n\mathbb Z$ such that for any $a\ne 0$ in $\mathbb Z/n\mathbb Z$, $X$ is disjoint with $X + a = \{x + a \pmod n\mid x \in X\}$?
2026-02-22 22:55:16.1771800916
Subsets of $\mathbb Z/n\mathbb Z$ that remain disjoint with themselves under shifts
48 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in FINITE-GROUPS
- List Conjugacy Classes in GAP?
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- Assuming unitarity of arbitrary representations in proof of Schur's lemma
- existence of subgroups of finite abelian groups
- Online reference about semi-direct products in finite group theory?
- classify groups of order $p^2$ simple or not
- Show that for character $\chi$ of an Abelian group $G$ we have $[\chi; \chi] \ge \chi(1)$.
- The number of conjugacy classes of a finite group
- Properties of symmetric and alternating characters
- Finite group, How can I construct solution step-by-step.
Related Questions in ADDITIVE-COMBINATORICS
- Exercise 1.1.6 in Additive Combinatorics
- Show that $A+B$ contains at least $m+n-1$ elements.
- Advantage of Fourier transform on $\mathbb{Z}_N$
- Sorting on non-additive ratios
- Asymptotic formula for the integral sequence s(n)
- Show that $|A+A| < 2.5 |A| $ with $A = \{ [n \sqrt{2}] : 1 \leq n \leq N \}$
- show that $[n \sqrt{3}]$ is an approximate group
- A combinatoric solution (closed expression) for $\sum_{k=i}^n \binom{n}{k}p^k(1-p)^{n-k}$
- On Gowers' approach of Green-Tao Theorem ($\mathcal{D}f$s span $L^q(\mathbb{Z}_N)$).
- Is that specific function additive under disjoint union?
Related Questions in SUMSET
- Supremum of Sumset (Proof Writing)
- Sum of two subspaces is a subspace
- number of sums in $\mathbb{Z}_{p^r}$ which are coprime to $p^r$
- Is the sum (difference) of Borel set with itself a Borel set?
- If the set $A$ is open in $X$, is the set $\{x+y : x\in A \}$ also open for a given $y \in X$ under any metric space?
- Where can I find this article by I. Ruzsa?
- Retrieve a series knowing all its convergent infinite powersums
- Nr of monthly eggs that have converted to chickens based on nr of months
- Finding elements such that none add to a perfect square
- Lower-bounding the density of 3A in terms of that of 2A
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
If a subset $X$ of a group $G$ is disjoint with $aX = \{ax: x \in X\}$ for any $a \in G-\{e\}$, then $X$ is either empty or one-element. Suppose, $\exists x, y \in X x \neq y$, then $xy^{-1} \neq e$ and $x \in xy^{-1}X \cap X$. However, the empty subset and all one element subsets clearly satisfy your condition.