Sum of 1/n^4 using a half period cosine series

770 Views Asked by At

I am aware that I can solve the $$\sum_{n=1}^\infty\frac{1}{n^4},$$ using a a cosine series for $x^2$ on the half period $0<x<2$ however I am wondering if I can also solve this by using the cosine half series for x and applying parsavels identity.

The result gives a series of $$\ {\int_{0}^2x^2 dx}= b+a\sum_{n=0}^\infty\frac{1}{(2n+1)^4},$$ where b and a are real numbers, thus giving me a sum for the odd terms. I am unsure how to compute the even terms with this method any help would be appreciated

1

There are 1 best solutions below

1
On BEST ANSWER

It is worth noting that, generalization to any power (i.e., other than the given case 4!) is possible here. The Riemann Zeta function $\zeta(s)$ and the complementary function Dirichlet alternating zeta function $\eta(s)$

\begin{eqnarray*} \zeta(s) &=& \sum_{n=1}^{\infty}{\frac{1}{n^{s}}} \\ \eta(s) &=& -\sum_{n=1}^{\infty}{\frac{(-1)^{n}}{n^{s}}} \end{eqnarray*}

are related by \begin{eqnarray} \eta(s) &=& \left(1-2^{1-s}\right)\zeta(s) \end{eqnarray},

Also,

\begin{eqnarray*} 2 \sum_{m=1}^{\infty}{\frac{1}{(2 m)^{s}}} &=& \sum_{n=1}^{\infty}{\frac{1}{n^{s}}} + \sum_{n=1}^{\infty}{\frac{(-1)^{n}}{n^{s}}} \\ &=& 2 \left(2^{-s}\right) \zeta(s) \\ 2 \sum_{m=1}^{\infty}{\frac{1}{(2 m-1)^{s}}} &=& \sum_{n=1}^{\infty}{\frac{1}{n^{s}}} - \sum_{n=1}^{\infty}{\frac{(-1)^{n}}{n^{s}}} \\ &=& 2 \left(1-2^{-s}\right) \zeta(s) \end{eqnarray*}

The odd and even sum respectively becomes,

\begin{eqnarray*} \sum_{m=1}^{\infty}{\frac{1}{(2 m)^{s}}} &=& 2^{-s}\zeta(s) \\ \sum_{m=1}^{\infty}{\frac{1}{(2 m-1)^{s}}} &=& \left(1-2^{-s}\right) \zeta(s) \end{eqnarray*}

In the particular case $s=4$, it becomes $\frac{1}{16} \zeta(4)$ and $\frac{15}{16} \zeta(4)$ as Jean-Claude Arbaut arrived at.