I need help to find the solution to the following problem:
$$ I=\iint_S \vec A \cdot\ d \vec s$$
over the entire surface of the region above the $xy$-plane bounded by the cone $x^2 + y^2 = z^2$ and the plane $z = 4$ where $\vec A = 4xz \hat i + xyz^2 \hat j + 3z \hat k$.
The answer is given to be $320 \pi$ but mine comes out to be different.
Calculate the divergence $\text{div} A=\nabla\cdot A=4z+xz^2+3$ and apply Gauss-Ostrogradsky theorem \begin{align} I&=\iiint_{\text{the region}}\text{div} A\,dxdydz=\int_0^4\iint_{x^2+y^2\le z^2}(4z+xz^2+3)\,dxdy\,dz=\\ &=\int_0^4\Bigl((4z+3)\underbrace{\iint_{x^2+y^2\le z^2}1\,dxdy}_{=\pi z^2}+z^2\underbrace{\iint_{x^2+y^2\le z^2}x\,dxdy}_{=0}\Bigr)\,dz. \end{align} Remark: the first integral is the area of the disc of radius $z$ and the second one has the symmetric integrand $x$ wrt the integration region.
Finally, you get the simple one-dimensional integral wrt $z$ that is easily calculated to be $320\pi$.