Please help me to prove that $$\frac{\cosh(t)-1}{\sinh(t)}=\frac{t}{2}\Big(1-\frac{t^2}{12}+\mathcal{O}(t^4)\Big).$$
This is what I wrote: $$\cosh(t)-1=\frac{t^2}{2}+\frac{t^4}{24}+\mathcal{O}(t^6)\quad\text{and}\quad \sinh(t)=t+\frac{t^3}{6}+\mathcal{O}(t^5).$$ But I don't know how to find the result. Thanks
Since your function is an odd function, its Taylor series at $0$ is of the type $a_1t+a_3t^3+a_5t^5+\cdots$ So, all that remains to be proved is that $a_1=\frac12$ and that $a_3=-\frac1{24}$. But\begin{align}\frac{t^2}2+\frac{t^4}{24}+\cdots&=\left(a_1t+a_3t^3+\cdots\right)\left(t+\frac{t^3}6+\cdots\right)\\&=a_1t^2+\left(\frac{a_1}6+a_3\right)t^4+\cdots,\end{align}you get that, indeed, $a_1=\frac12$ and $a_3=-\frac1{24}$.