Let $A$ be a set and let $\circ:A\times A\rightarrow B,$ $A\subseteq B$ be a binary operation ($A$ is not necessarily closed under $\circ$). If there exists some unique $e\in A$ such that $e\circ a=a\circ e=a$ for all $a\in A$ and for all $a\in A,$ there exists some unique $b\in A$ such that $a\circ b=b\circ a=e.$ Is there a name for $(A,\circ)?$ $$$$ Essentially, A is a group without the requirement that A be closed under the operation.
2026-02-22 23:07:16.1771801636
Term for a Set Equipped With a Binary Operation Which Contains Inverses
53 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in DEFINITION
- How are these definitions of continuous relations equivalent?
- If a set is open, does it mean that every point is an interior point?
- What does $a^b$ mean in the definition of a cartesian closed category?
- $\lim_{n\to \infty}\sum_{j=0}^{[n/2]} \frac{1}{n} f\left( \frac{j}{n}\right)$
- Definition of "Normal topological space"
- How to verify $(a,b) = (c,d) \implies a = c \wedge b = d$ naively
- Why wolfram alpha assumed $ x>0$ as a domain of definition for $x^x $?
- Showing $x = x' \implies f(x) = f(x')$
- Inferior limit when t decreases to 0
- Is Hilbert space a Normed Space or a Inner Product Space? Or it have to be both at the same time?
Related Questions in SEMIGROUPS
- What concept does a natural transformation between two functors between two monoids viewed as categories correspond to?
- Question about semigroups of permutations
- Isomorphism between finitely generated semigroups
- a question on Ellis semigroup
- Semigorup variety, hyperassociativity,idempotentunclear proof of $x^4\approx x^2$
- Hyperidentity, semigroups, bands.
- Maximal subgroup of a finite semigroup (GAP)
- Hypersubstitution, m-ary terms, semigroups, equivalent definitions
- Direct product of two finite monogenic semigroup
- Properties of infinite semigroup
Related Questions in MAGMA
- Is "(a * a') is cancellative" + "M has an identity" the same as "a has an inverse"
- Structures with $x*(y*z) = y*(x*z)$
- Terminology: Semigroups, only their "binary operations" aren't closed.
- Is there a name for an algebraic structure with only "addition" and "truncated subtraction"?
- Uniqueness of two side zeroes of binary operation
- What is an example of a groupoid which is not a semigroup?
- How many different operations can be defined in a finite groupoid with a given property?
- Subtraction Magmas
- Prove that there is no bijective homomorphism from $\left(\mathbb{Q},\ +\right)$ to $\left(\mathbb{Q_+^*},\ \times \right)$
- Notions of basis and span in a magma
Related Questions in QUASIGROUPS
- In a finite monoid (M, $\circ$) if the identity element $e$ is the only idempotent element, prove that each element of the monoid is invertible.
- Up to what level can associativity be guaranteed?
- Invertibility as Criteria for a Loop
- Commutative subtraction
- Definition of Additive Loop
- Multiplication table of a commutative quasigroup is a symmetric latin square. Is the converse also true?
- Why quasi-random sequences are generated in the interval [0,1]? Is it a normalized sequence generation?
- The smallest quasigroup which is not a group
- Examples of quasigroups with no identity elements
- Identifying all the quasigroups of order $3$ up to isomorphism
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
That table in Wikipedia is helpful: group-like structures.
So your object could be called a groupoid, if we consider the binary operation as a partial operation $B \times B \rightarrow B$. (Although this is larger than your definition, because in most cases the set of pairs for which the operation is defined cannot be expressed as $A \times A$).
Unfortunately, there are more than one definition for groupoid, as explained in various places, e.g. on Wolfram MathWorld.
Note that the combination of non-closedness with associativity is tricky: you have to state whether $a \circ (b \circ c) = (a \circ b) \circ c$ means "when both sides are defined, they are equal", or "when at least one side is defined, the other side is also defined and equal".
A well-known example of groupoid is the fundamental groupoid, in algebraic topology.