I just found in a book, the notation (for a real valued function $f$) $$ \liminf_{t \searrow 0} f(t)$$ I know what $$\liminf_{t\to 0} f(t)$$ means: $$\liminf_{t\to 0} f(t) = \lim_{\epsilon \to 0} \left(\inf_{s\in [-\epsilon,\epsilon]} f(s)\right)$$ but how can I define $$ \liminf_{t \searrow 0} f(t) ?$$ Is it equivalent to $$ \lim_{\epsilon \to 0,\epsilon >0} \left(\inf_{s\in [0,\epsilon]} f(s)\right)?$$
2026-02-22 17:38:51.1771781931
Inferior limit when t decreases to 0
29 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in LIMITS
- How to prove $\lim_{n \rightarrow\infty} e^{-n}\sum_{k=0}^{n}\frac{n^k}{k!} = \frac{1}{2}$?
- limit points at infinity
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Maximal interval of existence of the IVP
- Divergence of power series at the edge
- Compute $\lim_{x\to 1^+} \lim_{n\to\infty}\frac{\ln(n!)}{n^x} $
- why can we expand an expandable function for infinite?
- Infinite surds on a number
- Show that f(x) = 2a + 3b is continuous where a and b are constants
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
Related Questions in DEFINITION
- If a set is open, does it mean that every point is an interior point?
- What does $a^b$ mean in the definition of a cartesian closed category?
- $\lim_{n\to \infty}\sum_{j=0}^{[n/2]} \frac{1}{n} f\left( \frac{j}{n}\right)$
- Definition of "Normal topological space"
- How to verify $(a,b) = (c,d) \implies a = c \wedge b = d$ naively
- Why wolfram alpha assumed $ x>0$ as a domain of definition for $x^x $?
- Showing $x = x' \implies f(x) = f(x')$
- Inferior limit when t decreases to 0
- Is Hilbert space a Normed Space or a Inner Product Space? Or it have to be both at the same time?
- Definition of gaussian process
Related Questions in LIMSUP-AND-LIMINF
- $\alpha$ is an irrational number. Is $\liminf_{n\rightarrow\infty}n\{ n\alpha\}$ always positive?
- Prove that $\lim_{n\to \infty} (a_1a_2\ldots a_n)^{\frac 1n} = L$ given that $\lim_{n\to \infty} (a_n) = L$
- $\liminf, \limsup$ and continuous functions
- Maximum and Minimum value of function -8x^2 -3 at interval (-inf, +inf)
- A question on the liminf of a sequence
- connection between $\limsup[a_n, b_n]$ and $[\limsup a_n, \limsup b_n]$
- Trying to figure out $\mu(\liminf_{n\to \infty}A_n) \le \liminf_{n\to \infty}\mu(A_n)$
- $\lim \sup_{t\rightarrow \infty} \frac{W_t}{\sqrt{t}}$ question
- If $(a_{n})_{n}$ is a bounded sequence, show that $\liminf_{n\to \infty}a_{n}\leq \liminf_{n\to \infty}\frac{a_{1}+a_{2}+\cdots +a_{n}}{n}$.
- Extrema of this sequence
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?