I can not do the calculation for a very trivial demonstration. $$J(r,t)=Re \left[ \psi^{*}\frac{\hbar}{im}\nabla\psi \right]$$ I want to demonstrate that $$\nabla J(r,t)=\frac{i}{\hbar}[\psi^{*}(H\psi)-(H\psi)^{*}\psi]$$ $$H=-\frac{\hbar^2}{2m}\Delta$$ I did the divergence of the definition $$\nabla J(r,t)=\frac{\hbar}{im}\nabla\psi^{*}\nabla\psi+\frac{\hbar}{im}\psi\nabla^2\psi$$ $$\nabla J(r,t)=\frac{\hbar}{im}\nabla\psi^{*}\nabla\psi-\frac{2}{i}\psi H\psi$$ Now I'm stuck and I do not know how to go on
2026-02-22 21:04:09.1771794249
Trivial demonstration. $\nabla J(r,t)=\frac{\hbar}{im}\nabla\psi^{*}\nabla\psi+\frac{\hbar}{im}\psi\nabla^2\psi$
79 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in DERIVATIVES
- Derivative of $ \sqrt x + sinx $
- Second directional derivative of a scaler in polar coordinate
- A problem on mathematical analysis.
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Does there exist any relationship between non-constant $N$-Exhaustible function and differentiability?
- Holding intermediate variables constant in partial derivative chain rule
- How would I simplify this fraction easily?
- Why is the derivative of a vector in polar form the cross product?
- Proving smoothness for a sequence of functions.
- Gradient and Hessian of quadratic form
Related Questions in LAPLACIAN
- Polar Brownian motion not recovering polar Laplacian?
- Bochner nonnegativity theorem for Laplace-Beltrami eigenfunctions?
- Physicists construct their potentials starting from the Laplace equation, why they do not use another differential operator, like theta Θ?
- Integral of the Laplacian of a function that is constant on the sphere
- Trying to show 9 point laplacian equivalence
- Does the laplacian operator work on time as well as spacial variables?
- Find the Green's function $G(\mathbf{x},\xi)$, such that $\nabla^2G = \delta(\mathbf{x}-\xi)$
- Laplace-Beltrami operator in $\mathbb{R}^m$
- demonstration of vector laplacian in cartesian coordinates
- Deriving laplacian in spherical coordinates using matrix operations
Related Questions in DIVERGENCE-OPERATOR
- surface integral over a hyperbolic paraboloid
- Divergence in Spherical & Cylindrical Polar co-ordinates derivation
- Why doesn't this integral for the divergence of this vector field need to be fully calculated?
- Equivalent ways of writing Kullback-Leibler divergence
- Derivation of Divergence of a Vector Field Formula
- Trivial demonstration. $\nabla J(r,t)=\frac{\hbar}{im}\nabla\psi^{*}\nabla\psi+\frac{\hbar}{im}\psi\nabla^2\psi$
- How to prove the space of divergence-free vector fields on a manifold is infinite dimensional?
- Integral of 1/norm on a surface of a ball not centered around the origin
- show that xf(x)=c if xyf(xy)=(1-x)yf((1-x)y)
- $w =\operatorname{arcsinh}(1+2\operatorname{arcsinh}(1+2^2\operatorname{arcsinh}(1+2^{2^2}\operatorname{arcsinh}(1+\dotsm$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
What you need is
$$\nabla J(r,t)=Re\left[\frac{\hbar}{im}\nabla\psi^{*}\nabla\psi-\frac{2}{i\hbar}\psi^* H\psi\right]$$
Notice you forgot taking the real part, you forgot an $\hbar$ factor and you also forgot a complex conjugation sign.
The first term of this expression is purely imaginary so that
$$\nabla J(r,t)=Re\left[-\frac{2}{i\hbar}\psi^* H\psi\right]$$
Another way to express what the real part of a complex number $z$ is, is to compute $(z+z^*)/2$, thus
$$\nabla J(r,t)=\frac{1}{2}\left(-\frac{2}{i\hbar}\psi^* H\psi+\frac{2}{i\hbar}(H\psi)^*\psi\right)=-\frac{1}{i\hbar}\left[\psi^* (H\psi)-(H\psi)^*\psi\right] \; .$$
And since $i=-1/i$, we finished the derivation.