Use generating functions to solve:
$$a_n = 6 a_{n - 1} - 8 a_{n - 2} + 3$$
With initial condition: $a_0 = 1$ and $a_1 = 0$
$$a_n = 3 a_{n - 1} + 4 a_{n - 2}$$
With initial conditions: $a_0 = 1$
Have done recurrence relation problems before but am struggling with these two problems, any help is appreciated.
writing $∑_1 := \sum_{n=1}^∞$, \begin{align} A(x) &= \sum_{n=1}^∞ a_n x^n \\&= a_1x + a_2x^2 + \sum_{n=1}^∞ a_{n+2}x^{n+2} \\&= 0 + a_2x^2 + x^2∑_1\left(6a_{n+1}-8a_n+3\right)x^n \\&= a_2x^2 + x^2\left[ 6∑_1 a_{n+1}x^n - 8A(x) + 3∑_1x^n \right] \\&= a_2x^2 + x^2\Big[ 6\frac{A(x)-\color{red}{\overbrace{\color{black}{a_1x}}^{=0}}}{x} - 8A(x) + \frac{3x}{1-x}\Big] \\&= a_2x^2 + 6xA(x) - 8x^2A(x) + \frac{3x^3}{1-x} \end{align} So that
$$A(x) = \frac{a_2x^2 + \frac{3x^3}{1-x}}{8x^2-6x+1} = \frac{a_2x^2-a_2x^3 + 3x^3}{(8x^2-6x+1)(1-x)}$$
Expanding the right hand side as a Taylor series will give the answer. Alternatively, finish using the partial fraction decomposition (if you aren't a masochist, try W|A.)