Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f \in L^p(\Omega)$ for some $1<p<\infty$. Let $$ w(x) = \int_{\Omega} \Gamma(x-y)f(y)dy $$ be the Newtonian potential of $f$, where $\Gamma$ is the fundamental solution of Laplace's equation. By Theorem 9.9 in the book of Gilbarg/Trudinger, we then have $u \in W^{2,p}(\Omega)$, $\Delta w=f$ almost everywhere in $\Omega$, moreover $w$ satisfies the estimate $$||D^2 w||_{L^p(\Omega)} \leq C ||f||_{L^p(\Omega)}.$$ I am interested in the question if $w$ also satisfies an estimate of the form $$ ||w||_{W^{2,p}(\Omega)} \leq C ||f||_{L^p(\Omega)}, $$ in particular if the $L^p$ norm of the first order derivatives of $w$ can be controlled by the $L^p$ norm of $f$. If this estimate fails in general, is it satisfied if we assume that $\Omega$ is a Lipschitz domain?
2026-02-22 21:18:21.1771795101
$W^{2,p}$ estimates for Newtonian potential
517 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in PARTIAL-DIFFERENTIAL-EQUATIONS
- PDE Separation of Variables Generality
- Partial Derivative vs Total Derivative: Function depending Implicitly and Explicitly on Variable
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Harmonic Functions are Analytic Evan’s Proof
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Regular surfaces with boundary and $C^1$ domains
- How might we express a second order PDE as a system of first order PDE's?
- Inhomogeneous biharmonic equation on $\mathbb{R}^d$
- PDE: Determine the region above the $x$-axis for which there is a classical solution.
- Division in differential equations when the dividing function is equal to $0$
Related Questions in SOBOLEV-SPACES
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- $\mbox{Cap}_p$-measurability
- If $u\in W^{1,p}(\Omega )$ is s.t. $\nabla u=0$ then $u$ is constant a.e.
- Weak formulation of Robin boundary condition problem
- Variational Formulation - inhomogeneous Neumann boundary
- Why the Sobolev space $W^{1,2}(M,N)$ weak-sequencially closed in $W^{1,2}(\mathbb R^K)$?
- Sobolev space $H^s(Q)$ is Hilbert
- Duhamel's principle for heat equation.
- How to define discrete Sobolev dual norm so that it can be computed?
- Weakly sequentially continuous maps
Related Questions in POTENTIAL-THEORY
- Clarification for definition of admissible: $\Delta\in (K)$
- Formula for equilibrium measure on [-1,1] for various kernels?
- Showing that a function is harmonic
- logarithmic potential gives out a constant integral over an absolutely continuous measure
- Harmonic functions, equivalence of boundary conditions with phenomena outside domain.
- $W^{2,p}$ estimates for Newtonian potential
- Show that the complex potential is $w(z)=k\ln(z)$
- Functional inequality on $\mathbb{Z}^d$
- Potentials for Vector Fields on a Circle
- Continuity of potential function at an interior point
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?