I'm talking about the value of 0/0 in wheel theory, often denoted as "⊥." What are the behaviours of operations like addition, multiplication, exponentiation, trigonometric functions, their inverses, etc when ⊥ is involved? As far as I can guess, the outputs of all operations involving ⊥ should be ⊥, but I can't prove that for all operations.
2026-02-22 21:52:27.1771797147
What are the mathematical properties of ⊥ in wheel theory?
626 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in RING-THEORY
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- A commutative ring is prime if and only if it is a domain.
- Find gcd and invertible elements of a ring.
- Prove that $R[x]$ is an integral domain if and only if $R$ is an integral domain.
- Prove that $Z[i]/(5)$ is not a field. Check proof?
- Let $R$ be a simple ring having a minimal left ideal $L$. Then every simple $R$-module is isomorphic to $L$.
- A quotient of a polynomial ring
- Does a ring isomorphism between two $F$-algebras must be a $F$-linear transformation
- Prove that a ring of fractions is a local ring
- A question about Maschke theorem
Related Questions in RIEMANN-SPHERE
- Riemann sphere and Fundamental theorem of algebra
- Residue Theorem: Inside vs. Outside
- How to describe the relative positions?
- What is the real and imaginary part of complex infinity?
- How do you determine the distance from a projected point and its point of projection on a sphere having a unit radius
- What are the mathematical properties of ⊥ in wheel theory?
- Covering space: preimage
- Is infinity the reciprocal of zero/is zero the reciprocal of infinity?
- Can one replace the Riemann sphere with other objects? What happens?
- Determine closed geodesics on a 2 dimensional sphere.
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, the nullity element will absorb everything in all operations, similar to "NaN" in IEEE 754 floating point (except that it compares equal to itself because it is a "number", or at least equal citizen as an element of the wheel.).
For addition, it is axiomatic that
$$x + \bot = \bot$$
so no proof here is required. For multiplication, we note that
$$\bot = 0/0 = 0 \cdot /0$$
Now consider $x\bot$. This equals $x (0/0)$ which by associativity equals $(x0)/0$. But from here, we cannot simply go directly here because $0x = 0$ is an identity that does not hold in wheels - after all we need $0/0 = 0\cdot /0 = 0x = \bot$ for $x = /0$. Instead, we have the other axiom that
$$(x + yz)/y = x/y + z + 0y$$
and we take $x = 0$ and $y = 0$ so the left side becomes
$$(0 + 0z)/0 = (0z)/0 = 0/0 + z + 0(0) = 0/0 + z = z + 0/0 = 0/0$$
Thus, of course, since it doesn't matter what we call it, we have $(x0)/0 = 0/0$ so $x\bot = \bot$.
That $/\bot = \bot$ is, of course, trivial. Thus we have proven the desired result since the full set of operations on a wheel is $+$, $\cdot$, and $/$.
One way you can think of this intuitively was discussed in an earlier thread of mine here about how one could go about imagining a "topological wheel" where we put a spatial structure upon the "extended projective real wheel":
"Wheel Theory", Extended Reals, Limits, and "Nullity": Can DNE limits be made to equal the element "$0/0$"?
In particular, $\bot$ (or $\Phi$) could be considered here to be a sort of internal metaphor for the entire wheel itself. Thus the result of doing any operation to it is, essentially, "anything" and thus itself. Note that this also rather nicely gels with the intuitive notion of calculus of $\frac{0}{0}$ as an "indeterminate form" that can take on any, and every, value. Geometrically, this also makes some sense, as you could say that "technically", the graph of the "function"
$$f(x) := \frac{0}{x}$$
when $x$ is real, "should" have a vertical line at $x = 0$ just as it has a horizontal one at $y = 0$, looking at the limit as the numerator shrinks, but of course we can't allow that as it's a function so we leave the value at $x = 0$ undefined. Nonetheless, if you do go with this, it would agree conceptually also with this understanding of $\Phi$, which would be what we'd get if we consider it as a function in the wheel, and moreover, geometrically such a shape is a degenerate hyperbola, which again makes sense given this is the limiting case of non-degenerate hyperbolae (namely of $f_a(x) := \frac{a}{x}$ as $a \rightarrow 0$). (But this also makezz mvee gvoo Pveezzgh!)