Recently I have been reading a paper where the norm $||f||_{C_b}$ and $||f||_{C_b^m}$ appear without definition. So I would like to know what is the default definition in the mathematics community for these two norm? Thanks!
2026-02-22 21:25:09.1771795509
What does $C_b$ norm mean
145 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in FUNCTIONAL-ANALYSIS
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- Prove or disprove the following inequality
- Unbounded linear operator, projection from graph not open
- $\| (I-T)^{-1}|_{\ker(I-T)^\perp} \| \geq 1$ for all compact operator $T$ in an infinite dimensional Hilbert space
- Elementary question on continuity and locally square integrability of a function
- Bijection between $\Delta(A)$ and $\mathrm{Max}(A)$
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- Reference request for a lemma on the expected value of Hermitian polynomials of Gaussian random variables.
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
Related Questions in DEFINITION
- How are these definitions of continuous relations equivalent?
- If a set is open, does it mean that every point is an interior point?
- What does $a^b$ mean in the definition of a cartesian closed category?
- $\lim_{n\to \infty}\sum_{j=0}^{[n/2]} \frac{1}{n} f\left( \frac{j}{n}\right)$
- Definition of "Normal topological space"
- How to verify $(a,b) = (c,d) \implies a = c \wedge b = d$ naively
- Why wolfram alpha assumed $ x>0$ as a domain of definition for $x^x $?
- Showing $x = x' \implies f(x) = f(x')$
- Inferior limit when t decreases to 0
- Is Hilbert space a Normed Space or a Inner Product Space? Or it have to be both at the same time?
Related Questions in NORMED-SPACES
- How to prove the following equality with matrix norm?
- Closure and Subsets of Normed Vector Spaces
- Exercise 1.105 of Megginson's "An Introduction to Banach Space Theory"
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Minimum of the 2-norm
- Show that $\Phi$ is a contraction with a maximum norm.
- Understanding the essential range
- Mean value theorem for functions from $\mathbb R^n \to \mathbb R^n$
- Metric on a linear space is induced by norm if and only if the metric is homogeneous and translation invariant
- Gradient of integral of vector norm
Related Questions in MALLIAVIN-CALCULUS
- Why does the Malliavin derivative of a Markovian semigroup being strong Feller imply the semigroup strong Feller?
- Apparent inconsistency in Skorohod integration
- Malliavin derivative of a gaussian
- Closure of the space of step functions is Hilbert space
- Definition of isonormal Gaussian process
- A construction of a Stratonovich type integral for fractional Brownian motion
- Construct identification between $L^2( \Omega;H)$ and $L^2(T \times \Omega)$ where $H=L^2(T, \mathcal B,\mu)$
- Local integration by parts formula for Call options
- Hairer's proof of Norris' Lemma
- Textbooks on Malliavin Calculus
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
\begin{align*} \|f\|_{C_{b}(K)}=\sup\{|f(x)|: x\in K\}, \end{align*} and \begin{align*} \|f\|_{C_{b}^{m}(K)}=\sum_{k=0}^{m}\|f^{(k)}\|_{C_{b}(K)}, \end{align*} where $K$ is a compact set, here we assume the context is in one-dimensional, for higher dimensional is defined similarly, using the multi-indices $\alpha=(\alpha_{1},...,\alpha_{n})$ that $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}=k$, $0\leq k\leq m$, and consider $\|\partial^{\alpha}f\|_{C_{b}(K)}$.