I assume that most graphics calculators try to solve things analytically (where possible within reasonable computing time and power). Otherwise do they use numerical approximations for definite integrals and what are they? Gaussian quadrature? Newton-Cotes?
2025-01-13 02:04:13.1736733853
What does my TI-83 or other TI graphing calculators use to numerically approach certain integrals?
856 Views Asked by Ursa Major https://math.techqa.club/user/ursa-major/detail At
1
There are 1 best solutions below
Related Questions in NUMERICAL-METHODS
- How well does $L_{n,f}$ approximate $f$?
- Verifying that the root of $t = \sqrt[3]{(t + 0.8)}$ lies between $1.2$ and $1.3$
- How to handle complicated double integral like this numerically
- Runge Kutta Proof
- A problem from Dennis Zill's book
- 2 Stage, Order 3 IRK
- How can I order the following functions such that if $f$ is left of $g$ , then $f=O(g)$ as $x$ goes to $0$?
- How can I find an interval where $f(x)=\frac 12(x+\frac 3x)$ is contractive mapping?
- Error accumulation
- Are there any techniques to narrow down intervals in interval-arithmetic
Related Questions in CALCULATOR
- Why does my calculator show -2^2 as -4
- Calculating number of subgroups of explicit order in Magma Calculator
- Find the absolute and relative error for a calculator with incorrect rounding
- How to calculate distance formula in fx-991MS calculator?
- How to find values of trigonometric functions, using identities and a calculator?
- How can I use the solve() function inside of itself?
- How calculators do trigonometry
- Non linear regression calculator
- Raising i to a large power on a Ti-83
- Express "if true, then 1 else 0" in a formula suitable for Desmos calculator
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Refuting the Anti-Cantor Cranks
- Find $E[XY|Y+Z=1 ]$
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- What are the Implications of having VΩ as a model for a theory?
- How do we know that the number $1$ is not equal to the number $-1$?
- Defining a Galois Field based on primitive element versus polynomial?
- Is computer science a branch of mathematics?
- Can't find the relationship between two columns of numbers. Please Help
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- A community project: prove (or disprove) that $\sum_{n\geq 1}\frac{\sin(2^n)}{n}$ is convergent
- Alternative way of expressing a quantied statement with "Some"
Popular # Hahtags
real-analysis
calculus
linear-algebra
probability
abstract-algebra
integration
sequences-and-series
combinatorics
general-topology
matrices
functional-analysis
complex-analysis
geometry
group-theory
algebra-precalculus
probability-theory
ordinary-differential-equations
limits
analysis
number-theory
measure-theory
elementary-number-theory
statistics
multivariable-calculus
functions
derivatives
discrete-mathematics
differential-geometry
inequality
trigonometry
Popular Questions
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- How to find mean and median from histogram
- Difference between "≈", "≃", and "≅"
- Easy way of memorizing values of sine, cosine, and tangent
- How to calculate the intersection of two planes?
- What does "∈" mean?
- If you roll a fair six sided die twice, what's the probability that you get the same number both times?
- Probability of getting exactly 2 heads in 3 coins tossed with order not important?
- Fourier transform for dummies
- Limit of $(1+ x/n)^n$ when $n$ tends to infinity
The TI documentation states that the
fInt()
function of TI-83 or TI-84 Plus uses the Gauss-Kronrod method.It seems that the official documentation never discloses the number of points used, but a user's experiment indicates it is the 15-point formula.