What is the value of $2x+3y$ if
$x+y=6$ & $x^2+3xy+2y=60$ ?
My trial: from given conditions: substitute $y=6-x$ in $x^2+3xy+2y=60$ $$x^2+3x(6-x)+2(6-x)=60$$ $$x^2-8x+24=0$$ $$x=\frac{8\pm\sqrt{8^2-4(1)(24)}}{2(1)}=4\pm2i\sqrt2$$ this gives us $y=2\mp2i\sqrt2$ we now have $x=4+2i\sqrt2, y=2-2i\sqrt2$ or $x=4-2i\sqrt2, y=2+2i\sqrt2$
substituting these values i got $2x+3y=14-2i\sqrt2$ or $$2x+3y=14+2i\sqrt2$$
But my book suggests that $2x+3y$ should be a real value that I couldn't get. Can somebody please help me solve this problem? Is there any mistake in the question.?
Thank you.
we get $$x^2+3x(6-x)+2(6-x)=60$$ simplifying we obtain $$-2x^2+16x-48=0$$ or $$x^2-8x+24=0$$ can you solve this? you will get $$x_1=4+2\sqrt{2}i$$ or $$x_2=4-2\sqrt{2}i$$ and and $$y_1=2-2\sqrt{2}i$$ $$y_2=2+2\sqrt{2}i$$ so $x+y=6$